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A description is given of a general closure principle involving the minimization of the mean square
error. The procedure based upon this principle can be applied to the truncation of the BBGKY hierarchy
at various stages and to the approximation of unwanted terms arising in the equation of motion method
by linear combinations of the observables to be retained. On a general level the significance of the closure
principle is described in terms of the geometry of function space, and several useful general properties
of the principle are derived. A discussion is devoted to the relation between the closure error (i.e., the
least mean square error) and the error in the end result (e.g., the free energy, the radial distribution
function, etc.); however, the results, while providing some insight, are not sufficiently refined to provide
upper bounds to errors in all problems of statistical mechanics where the method is applicable. On the
level of specific application it is shown that the principle yields results identical to the random phase
approximation and to the linearized version of the Kirkwood superposition approximation in two
special cases. Later sections of the paper describe in greater than usual generality, the formalism con-
necting thermodynamic properties and other equilibrium properties with the microscopic equations
of motion in which closure approximatjons have been introduced. Two illustrative examples of the
application of the over-all method were thade to the case of a classical system of electrons in a uniform
background of compensating charge, one leading to the well-known results of Debye and the other to a
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more accurate and elaborate theory developed in quantitative detail elsewhere.

I. INTRODUCTION

THE purpose of this paper is to apply a general
closure principle, discussed in detail elsewhere by
one of the authors,! to some representative problems
in classical statistical mechanics. The closure principle
is described in Sec. III, and is called least mean
square closure. It consists of only two input elements:
one is a set of observables (or more generally, a

“* Present address: Department of Physics, The Duxal Institute
of Technology, Philadelphia, Pa.
1J. M. Richardson, J. Math. Anal. Appl. (to be published).

manifold of observables) in terms of which another
function of coordinates and moments is to be linearly
approximated. The second input element is an
averaging operation to be employed in calculating the
mean of the square of the error in the above approxi-
mation. When these input elements are fixed, the
remainder of the procedure is determined—the
minimization of the mean square error with respect to
the choice of coefficients in the linear approximant.

In the present paper the viewpoint is mainly
methodological. Our closure principle yields two
well-known closure approximations as special cases,
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i.e.,, the random phase approximation and the lin-
earized Kirkwood superposition approximation; this
does not mean that it is to be viewed solely as the
process of deriving well-known approximations from
relatively unfamiliar starting points. The consistency
of the principle with widely accepted approximations
lends added confidence in applying the principle to
closure approximations in other situations. Therefore,
the special cases presented here are intended, at least
in part, as a “calibration” of the general method.

However, the least mean square error closure
principle provides more than extrapolation of approx-
imation methodology from the familiar into the
unfamiliar. It gives a new and different understanding
of frequently employed closure approximations (e.g.,
the random phase approximation and the linearized
Kirkwood superposition approximation). It also
promises a satisfactory approach to the problem of
error estimation, which has been a serious deficiency
in previous work on closure techniques.

In this paper the application of the closure principle
is described on two levels: a general level characterized
by a general observable manifold, and a specific level
on which particular manifolds and particular physical
systems are considered. In Secs. II, III, and IV the
method is described and discussed for the case of a
general observable manifold. In Sec. V, we consider
an observable manifold spanned by symmetric sums
of single-particle functions of position and an
averaging operation corresponding to a free-particle
canonical ensemble. It is shown that the resultant
closure principle, when applied to pair functions, is
identical to the random phase approximation. Section
VI treats a different manifold spanned by symmetric
sums of translationally invariant pair functions of
position. With the same averaging operation as
before, the closure principle applied to triplet func-
tions is equivalent to the linearized Kirkwood super-
position approximation.? Sections VII and VIII deal
with the calculation of thermodynamic properties,
using the classical equation of motion method for a
general observable manifold and incorporating the
least mean square error closure procedure. The
final section applies the previous results to the specific
case of a system composed of classical electrons in a
uniform background of compensating charge.

II. STATES AND OBSERVABLES

We consider classical systems containing a fixed
number N of particles of one type. The state of a
system is defined by the set of coordinates and

2 See, for example, T. L. Hill, Statistical Mechanics (McGraw-Hill
Book Company, Inc., New York, 1956).

J. M. RICHARDSON AND L. C. LEVITT

moments of the N particles

X=(r, "> PN)- @n

A basic feature in the present method is the selection
of a set of observables
S = (g, ", ),

where each observable «; is a function of the coordi-
nates and moments, i.e., «; = o;(X), which is generally
complex. It is required that the observables be linearly
independent. Furthermore, it is required that the
observables be invariant to the interchange of identical
particles. Although the general discussion involves
a finite set of observables, extension to the case of
infinite sets in special applications will involve no
essential difficulties.

A fundamental concept is the observable manifold
(OM), which is defined as the set of all linear com-
binations of observables. The OM is fundamental in
the sense that it is clearly invariant to linear trans-
formations of the type

°’rN;pls”

[\ L]

" @2

Cists,s

i=1
where C;; is nonsingular. Thus, the OM may be
regarded as representing a large number of equivalent
sets of observables. In any case, the OM may be said
to be “spanned” by the set S.

It is required that the OM contain unity as an
element. It is further required that the OM be in-
variant to complex conjugation. Invariance to other
operations may be included in special cases.

III. LEAST MEAN SQUARE ERROR
CLOSURE

In a large number of problems in classical statistical
mechanics it is desired to approximate phase functions
by linear combinations of the members of a given
observable set, i.e., by a member of a given observable
manifold. After averaging in a suitable statistical
ensemble, the approximation is then expressed in
terms of mean observables. In some cases, this takes
the form of an approximation of an n-particle distri-
bution function of one order by a linear combination
of those of lower order, as shown in Secs. V and VI.

We first consider the approximation method for
the case of an arbitrary phase function y = y(X), and
a general observable manifold. Let y be approximated
by a linear combination of observables in the set S,
as follows:

(3.1)

where € is the error. As the criterion of the validity of
approximation we use the mean square error (e*e)’;

n
y= Zdﬂ; + ¢
i=1
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here the symbol ( )" denotes the operation of
averaging in the subsidiary statistical ensemble
defined by a distribution function P'(X) which is
sufficiently simple to allow explicit analytical treat-
ment, but is still not drastically different from the
actual ensemble involved in the problem being
treated. The process of averaging in the latter ensemble
is denoted by ( ). A typical example of the averaging
operation ( )’ is in the process of averaging in the
free-particle canonical ensemble. We frequently impose
the requirement that ( )’ share the same invariance
properties as the OM.

The minimization of (e*e)’ with respect to the
values of the a; yields the set of equations

@e = oy = 3 u'a, = 0.
The solution of (3.2) is
a; = % Q1k<°‘: 7Y
where Qj is the matrix reciprocal of (afa), i.e.,
%ij(a,’:aly = ;.

With the optimal choice of coefficients a;, Eq. (3.1)
can be written in the form

y=py+ s

3.2

(3.3)

3.4)

(3.5)
where

py = Z “fQik(“:?’>'-

ik
Alternatively, we can write

3.6

py = f dX'P(X)K(X, X'W(X'), (3.7
where
K(X, X)) = 2 0(X)Q s (X') 3.8

and P’(X) is the subsidiary distribution function
involved in the operation ( )’

One can readily deduce the following properties of
the operator p:

a. p is a linear operator. (3.9
b. p is a projection operator. (3.10)
c. p leaves elements of the OM unchanged,

pa; = o, 3.11)

d. py,and (1 — p)y, are uncorrelated in the
subsidiary ensemble, i.e.,

Py — p)y2)) = 0. (3.12)

A large number of additional properties of p exist;
however, the above list is sufficient for the applications
treated later.

It is perhaps of interest to interpret the operation
p in terms of the geometry of a Hilbert space in which
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the elements are all possible phase functions, the
averages of whose squares exist in the subsidiary
ensemble. We defihe the inner product of the two
functions f(X) and g(X) by the relation

(£, 8) = {f*g)" (3.13)

Clearly, the norm (i.e., “distance” of f from the origin)

is given by

112 = (f*fY. (3.14)
The observable manifold (OM) is then the (n + 1)-
dimensional hyperplane passing through the “origin”
(the function O) and the *“points” «;(X). We consider
next an arbitrary “point” y, generally not a member
of the OM. It can then be shown that py is that point
in the OM which is closest to y in the sense of the
minimum of the “distance” (norm of the difference)
from y to the point in the OM. An arbitrary point in
the OM is clearly

)7: a%;;

the norm of the difference of this function and y is

Iy —Saul = K I y—Sag, 2>’]&, (3.15)

the minimization of which is clearly identical to the
original mean square error minimization problem.

To complete the discussion of closure we must
consider the problem of minimizing an over-all “‘error
function” dependent upon a set of errors associated
with a corresponding set of functions y,(u =1, -+, m)
to be approximated. We write

Yu = Ej:%am + €,

(3.16)

where the coefficients are to be chosen to minimize
the over-all error function

C =3 Wylee), (3.17)

where W,, is a positive definite Hermitian matrix.
It can be shown that the solution is independent of
the matrix W,, and that, furthermore, the solution is
expressible in terms of the projection operator p
in the same way as before; i.e., with the optimal
values of the a,,, we can write

2 %85 = PYu-
IV. DISCUSSION OF ERRORS

A simple rearrangement of (3.5) yields the following
expression for the error e involved in the replacement
of the phase function y by the optimal point py in
the OM:

iy

(3.18)

where g = 1 — p is the projection operator which is
complementary to p. The least mean square error,
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employing the subsidiary averaging operation {( ),
is clearly

(|e® = ayl?Y, “4.2)

a quantity which can be computed directly in most
cases of interest. It is important to note that the
average error (again using the subsidiary averaging
operation) is simply
(&) =0; (4.3)
furthermore,
(ae) =0,
for any observable «; in the OM.
Let us now turn to the consideration of the opera-
tion of averaging in the actual statistical ensemble
involved. Let us denote the corresponding distribution
by P(X) and the averaging operation by ( ). If we
had used ( ) in computing the least mean square
error, i.e., { )’ = ( ), it would follow directly from
(4.3) that

(4.4)

(&) = 0; 4.5)
thus we would conclude that
¥y = {py). (4.6)

Therefore, in this case the truncation approximation
would be exact after averaging. It is thus clear that in
the general case where the two averaging operations
are not identical, the magnitude of the error (e) is
proportional to the deviation of P(X) from P’'(X).
Since the distribution functions corresponding to
( )and ( ) are P and P’, respectively, we can write

(e) = (eP[P")". 4.7)
Using a trivial generalization of the Schwartz inequal-
ity, we obtain the result

K™ < (Il (P[P)?)'. (4.8)
However, it is possible to derive a stronger inequality.
Employing the results (3.12) and (4.1), it can be shown
that

(eP[P")" = (eq(P|P))’
and hence that

[Ke)I? < lel?) ([a(P[P)PY'. (4.10)

The last inequality provides a generally closer upper
bound to (¢) than does (4.8), since it can be shown that

([(@P[P)PY < A(P[P)RY. (4.11)

Thus, the expressions (4.8) and (4.10) provide upper
bounds to (e) (the error averaged in the actual en-
semble) in terms of (e?)’, the square error averaged in
the subsidiary ensemble.

Let us assume that the actual ensemble is defined
by the distribution function

P(X) = exp [8(4 — H)],

(4.9)

(4.12)
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and the subsidiary ensemble by
P’(X) = exp [B(4o — Ho)}
Let us assume that
H=H,+ gH,,

where g is a parameter of smallness. Let us further
assume that H,, HZ, -, H lie in the OM. It then
follows that in the expansion of P/P’ in powers of
gH; , the application of q will annihilate all terms up
through the rth. Thus, employing the Taylor-
Maclaurin remainder formula, we obtain

ﬂ —_ 1 ' — — . r+1
q(P,) = O 1B — 4o — BT GH,
(4.14)

where 0 is a function of gH, satisfying the inequality
0 < 0 < 1. Assuming that y is independent of g, it
follows from (4.10) that (e) is of the order of g™ if
the subsidiary average of the square of (4.14) exists.

Unfortunately, the above inequalities are not
sufficiently strong for application to estimation of the
error associated with all »’s and all Hamiltonians H
met in problems of physical interest (for example,
the Cculomb interaction problem defies application
of the above inequalities and gives trivial results—
i.e., that the error is bounded by infinity). However,
the above results provide some insight into the nature
of the least mean square error closure procedure.

(4.13)

V. RANDOM PHASE APPROXIMATION

In this section and Sec. VI we demonstrate that the
least mean square error closure principle, with
suitable choices of OM’s and subsidiary averaging
operations, is equivalent to two approximations
commonly employed in statistical mechanics, viz.,
the random phase approximation and the linearized
Kirkwood superposition approximation, respectively.
In this section we investigate application of an OM
spanned by single-particle functions of position and
a subsidiary averaging operation ( )’ corresponding
to a canonical ensemble of systems of free particles.
It is shown that such a procedure applied to the
approximation of a given pair function by an element
in the above OM gives a result identical to the random
phase approximation. When the result is averaged in
a canonical ensemble of interacting particles, the
approximation is equivalent to the neglect of second-
order correlations.

Consider an observable manifold containing all
symmetric sums of functions of the positions of
individual members of a set of identical particles,
confined to a volume €. Such a manifold is spanned
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by the set of functions

N
P(r) = szla(r - rs)s (5-1)

where r is a reference vector assuming all possible
positions in the volume £, and where the r, are the
positions of the N particles. An alternative set is

N
pr=2 """,

g=1

' (52)

where the wave vector k is defined on a lattice given
by the usual cyclic (periodic) conditions at the
boundaries of the volume Q now assumed to be a
cube. For the sake of simplicity the latter set of func-
tions is used in the subsequent analysis.

We assume that the subsidiary averaging operation
{ Y is defined by the distribution function

PI(X) = Q_NP(pl, Tt pN)s (5'3)
where P(p,, - - -, Py) is the equilibrium distribution
of momenta and where the positions r;, <+, ry are
uniformly distributed in the volume Q. The least
mean square error closure is given by the projection
operator p defined by

py(X) = f AX'P(X)KX, X)p(X).  (54)

With the present choice of OM and {( ', the kernel
K(X, X’) is given by

K(X,X)=1+ N7 g' p(X)pr (X")
=1+ N_l 2 [Qé(r, - rs’) - 1]) (5'5)

where the last summation is over all pairs of particle
labels s and s (including s = '), Since the OM
contains only those functions which are symmetric
with respect to the permutation of particles, the
projection operator p not only replaces an arbitrary
phase function by an optimal linear combination of
functions of single-particle positions, but it also plays
the role of a symmetrizer. For example, it can be
shown that :

1 N
pe(r) = = 3 2(r), (5.6)
N s=1
where g(r,) is an arbitrary function of the position r,
of particle s.
It follows directly from (3.11) that

PPr = Pr>s (5.7
and in particular that

Ppo == Po> (5.8
or

pl = 1. (5.9)

By direct computation it can be shown that where
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k and k' are both nonvanishing, the following relation
holds:

pelkrn) — ok kK 0. (5.10)

These simple results form the basis for the derivation
of several further results of more direct interest in
classical statistical mechanics.

We consider first the phase function

P = PePr — Prir - (5.11)

Using the results of the previous paragraph, it can be
readily shown that

PP = N(pidio + pdro — Nogbpo). (5.12)

The substitution of py, by ppy is recognizable, in
either the averaged form or the above unaveraged
form, as the random phase approximation. Trans-
forming the above result from (k, k') space to (r, ')
space gives

pe(r, 1) = n(p() + p(x') —n),  (5.13)
where # = N/Q and where
pr, ) =380 —r)or —r,),  (5.14)

in which the prime on the summation denotes the
omission of “self” terms for which 5 = s’

The error incurred in the replacement of p by
PP is found to be

[3%57% = qpkk' = Pkk" if k, k' 5£ 0

= 0, otherwise
Transforming this result into (r, 1) space, we obtain

e(r, ") = qp(r, v') = p(r, 1) — nlp(¥) + p(r)] + n2
(5.16)
As demonstrated in Sec. III for a general OM, it is
a fact that (r, r’) not only vanishes under the averaging
operation { ), but also possesses vanishing moments
with fespect to p(r") (or, alternatively, p,); that is,

{p(r")e(x, 1)) = 0. (.17
However, these results no longer hold if in the above
expression the averaging operation { )’ correspond-
ing to an equilibrium ensemble of noninteracting
particles is replaced by averaging operation { ),
corresponding to an equilibrium ensemble of systems
of interacting particles. Here we obtain the resuit

(e, X)) =r’fg(lr = -1},  (5.18)
assuming the absence of external forces. In the above
expression g(r) is the radial distribution function.
Hence, the approximation

{p(r, X)) = (pp(r, r')) (-19)
is equivalent to the neglect of second-order corre-
lations.

(5.15)
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VI. LINEARIZED KIRKWOOD SUPER-
POSITION APPROXIMATION
In this section it is shown that the use of an OM
spanned by translationally invariant pair functions of
position and the use of the same subsidiary averaging
operation (i.e., averaging in a free-particle canonical
ensemble) yields a closure approximation which when
applied to a triplet function of position is, after
canonical averaging, identical to the linearized
Kirkwood superposition approximation.
In this case we choose an OM spanned by the
functions
1, 01 (= pep_i — Po)s 6.1

where k assumes the same discrete set of vector values
as before, except that now we retain only half of k
space, i.e., the largest set not transformable into
itself by reflection (k — —k). This OM is equivalently
spanned by the functions

1’ z, 6(1' — I + rs’), (62)

where r assumes all positions in the volume Q. Still
employing the same subsidiary averaging operation
{ ) as before, the projection operator for the new
OM is defined by the kernel

_ 1
2N(N — 1)

x> X [Qor, — 1, +1,— 1) — 1] (6.3)

8182 8384
We consider the operation by p on a triplet function of
position. It is sufficient to consider exp (ik,-r; +
ik, * ¥y + iky « 13), wWhere k;, k,, and k; are all non-
vanishing. We obtain the result
pexp(ik,-r; +iky-xry +iks-15) = 0. (6.4)
With the use of this result, a straightforward calcu-
lation yields
PPr Pr,Pr, = 0% (ks + kp + ki)
X (0, + 0y, + 0, + N), (6.5)
where 6X(u) is the Kronecker delta function of u.
The canonical average of (6.5) may be shown, by
transforming back to r space, to be identical to the
linearized Kirkwood superposition approximation.
However, the relation between (6.4) and the linearized
Kirkwood superposition approximation may be
shown more easily. Let us write the configurational

distribution function for a triplet of particles in the
form

SOy, 1y, 15) = Q73[1 + w2y, 1) + w(ry, 15)
+ wO(ry, 1) + wO(r,, 1y, 19)], (6.6)

where w® is defined by the relation f@(r,,r,) =

KX, X)=1+
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Q7?1 + w'¥(r,, ry)]. The approximation in question is
the neglect of w®\(ry, r,, ry). By direct computation
we obtain the result

(exp [i(ky » 1y + Ky 1y + k3 - 13)])
— Qs f f dr, dry dew™(t,, Ty, ¥5)

X exp [i(ky +r; + kg« Xy + k3o 15)].  (6.7)

According to (6.4), the replacement of exp [i(k; - r; +
k, « 1y + kg - 13)] by the same quantity operated upon
by p is the same as the neglect of this quantity alto-
gether; therefore, it follows that the average of this
quantity must also be neglected. According to (6.7),
this is equivalent to the neglect of w'®(r,, r,, r3). Thus
the approximation of a triplet function by p operating
on this function is equivalent to the linearized Kirk-
wood superposition approximation.

The above analysis shows that the linearized
Kirkwood superposition principle has another basis
(i.e., the least mean square error closure principle
using a pair function OM and free-particle subsidiary
averaging). Although the Kirkwood superposition
principle is superior to its linearized version in certain
qualitative features, it is wrong to conclude that the
validity of the linearized version is equivalent to the
validity of linearization. It is our conviction that
the linearized version is valid in a broader domain
than is the process of linearization.

The applications of the general closure principle
illustrated in this section and in Sec. V can obviously
be extended to higher order—for example, the
approximation of a four-particle distribution function
by a linear combination of lower-order distribution
functions. The treatment of higher-order closure
approximations will be treated in a later communi-
cation.

VII. A GENERAL HAMILTONIAN AND ITS
RELATION TO THERMODYNAMIC PROPERTIES

The application of the linear closure techniques
described above to the approximate calculation of
thermodynamic properties requires the use of an
appropriate formalism connecting the average values
of observables with the free energy. In the description
of this aspect of the problem we consider the general
set of observable S = (a;, - -, a,). The first step is
the construction of a Hamiltonian which is more
general than that of direct physical interest. Accord-
ingly, we write

H=H,+ 3 bjo; + 33 cpoio, 7.1
i ik

where H, is a Hamiltonian of simpler structure than
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H and the quantities b, and c;; are parameters which
are generally complex. It is essential that the domain
of variation of these parameters includes the points
representing the Hamiltonian(s) of physical interest.
As a matter of formal convenience, it is assumed that
¢;, and ¢; are not necessarily equal. Furthermore, the
parameters will not generally be constrained in such a
way that H is real, although the parameters of direct
physical significance must of course satisfy such a
constraint.

The appropriate constraints can be expressed as
follows. We first note that the assumed invariance of
the OM to complex conjugation implies that o} is a
linear combination of the o, i.e.,

*
®; = Z C % -
k

The conditions for the reality of H can then be written

(1.2)

by = 3 byDy;» (7.3a)
Che = Ciss (7.3b)

where D, is the matrix inverse of Cy.
In the petite canonical ensemble, the Helmholtz
free energy A, corresponding to H, is defined by

P — f dXetH (1.4)
and the average value of an arbitrary function of
coordinates and momenta f(X) is

o =defe_ﬂH/dee—ﬂH

- f dXfef4=H), (7.5)
In this treatment the customary factor (A*¥N!)~! in
front of the integrals is omitted for convenience.

Clearly, the Helmholtz free energy is a function of
B, b;, and ¢, . It is well known that

2(BA4)/08 = (H), (7.62)

and it is easy to show that
0A[0b; = (0H[0b;) = (a;), ~(7.6b)
0A[0c,, = (BH[Oc,) = KHajo).  (7.60)

Thus, the differential of 4 is given by
d(A) = (H)df + B
x (360 db; + 4 3w des). (77
It is easy to show that
0{w;)[0by, = 0{a,)/0b; = —B{Ao;Acz), (7.8)
where Aa; = a; — («;). Multiplication by C;; and
summation on j yields

0a)[0by, = ) [0b; = — DA%y,  (1.9)
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where 5, is defined by

If the constraints (7.3a) ensuring the reality of H are
imposed, then b; and b} are equal. Using (7.6c) and
(7.9), we can derive the result
04 1], »
ey 2[<°"> ) = % o,
Certain differential relations connecting the Helm-
holtz free energy with the average observables have
now been established. We now consider the integration
of these relations in order to obtain explicit expressions
for the Helmholtz free energy.

(7.10)

*
19, q. (7.11)

Procedure 1: Let the Hamiltonian of interest be
given by
A=H o+ z 5,-0(5 .
)

Here it has been assumed that the set of observables
is sufficiently extensive that the term

Z Ba’“i

includes the interaction energy. The procedure here is
to integrate (7.6b) along the following path in param-
eter space:

§ = const,
C,~k == 0, (7.12)
by =2, 0<i<I.
We obtain
1
A= 4o+ 35, f Mo, (7.13)
where ! °
o = f dXe 5o, (7.14)

It is understood that the («;) are evaluated at § = §,
aj = Aa,, Ca‘k = 0.

Procedure 2: In this case the Hamiltonian of interest
is assumed to be given by

H=H, + 2 b, + %zké,-ka:ock.
7 J

Here, as a minimal requirement, the set of observables
o; need only be sufficiently extensive for the quadratic
term in A to represent the interaction energy. Equa-
tion (7.7) is now integrated along the path

§ = const,
b, = b;,
e (7.15)
Cip = Ay,
011,
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We obtain

e
0
1
— 4+ ﬂ da[g bie) + 13 b

* 1 a(“;)

x (@i 5o )] (7.16)
In order to carry out the explicit calculation, one
must know the quantities («,) and 0{(a,)/0b}. The
complex conjugates can be obtained through the use
of (7.2) and (7.3a). It is, of course, understood that in
(7.16) the quantities («,) and 0{(«})/0b, are evaluated
at a point on the contour (7.15) corresponding to 4.

VIII. THE “EQUATION OF MOTION”
METHOD

The key feature of this method is the estimation of
the average observables as functions of the parameters
B, b;, and c;;, by the use of equations of motion of the
o; truncated by the linear closure technique discussed
in Secs. III through VI.

As a representative point in phase space moves
according to Hamilton’s equations [using the general
Hamiltonian (7.1)], the corresponding time depend-
ence of the observables «; is given by

a; = [a;, H] = La,, 8.1)
where [u, v] is the Poisson bracket of ¥ and v and
£ is the Liouville operator. If the right-hand side of
(8.1) were a linear combination of the «; (i.e., if it
lay in the OM), the exact solution would be obtainable
directly. Furthermore, the canonical average defined
by (7.5) of both sides of (8.1) would vanish, and one
could then deduce the («;) exactly. However, all of
the Lo, j=1,---,n lie in the OM only in special
trivial cases. In most cases of interest, we are obliged
to approximate the expressions La; in some manner.
Using the least mean square error closure procedure,
we obtain

;= pla; = g“ka(“Tﬁ“jy, (8.2)

where Q,, is the matrix reciprocal of (a}«;) and
{ ) denotes, as before, the subsidiary averaging
process used in the computation of the mean square
error. There is an interesting correspondence between
Eq. (8.2) and the work of Zwanzig® on the approxi-
mate eigenvalues and eigenfunctions of the Liouville
operator £. If in his formalism we take his weighting
function to be the subsidiary distribution function
P’'(X) and restrict his approximate eigenfunction to be
a point in the OM, then the formal solution of his
variational problem is the same as the equation giving
the normal modes of (8.2).

* R. Zwanzig, Phys. Rev. 144, 170 (1966).
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The averaging of (8.2) in the actual ensemble then
gives the approximate result

(pLay) = %(%} Qu <°‘ft°‘1>' = 0.

Since the equations above are homogeneous in the
(a4, it would appear that the correct solution would
be (x,) = 0 in all but singular cases. However, since
the OM is required to contain unity, it follows that
at least one linear combination of the «, is known in
advance. Assuming for the sake of simplicity that only
one linear combination of the a, is known and that this
one linear combination is simply a single member o,
of the observable set (element of the OM), it follows
that the equation labeled by j = 1 in the set (8.3) is
redundant and should be discarded. The remaining
set (j=2,---,n) are not homogeneous in the
quantities (xg), * * * , (a,), and hence they can be solved
for these quantities (except perhaps for singular
cases).

In many problems the fa; will have vanishing
projections on the OM. In this case, it is appropriate
to consider the alternative approximate equations

8, ~ p, (8.4)

and replace £ by £? everywhere in the equations
subsequent to (8.2).

In many cases, the exact form of the canonically
averaged equations

ELa) =0 (or L2 =0) 8.5)
is well known (e.g., the thermal BBGKY hierarchy).
In this case the least mean square error closure
approximation can be applied in its canonically
averaged form; that is, (Ce,) (or (L2)) is to be replaced
by (pLa;) (or (pL2y)).
IX. TREATMENT OF THE CLASSICAL
ELECTRON GAS

In this section, the closure approximations discussed
in Secs. V and VI are applied through the use of the
formalism of Secs. VII and VIII to the calculation of
the thermodynamic properties of an illustrative
system. We have chosen a classical system of N
electrons in a uniform background of compensating
charge. The Hamiltonian of such a system is

(8.3

A= Ho+ % %’ Ol PP — Po)s .1
where
1 N
Hy==-3 P! 9.2)
2m 8=1

is the kinetic energy of the system of electrons. The
quantities p, are defined by

N x
— KTy
Pr = Z € »
8=l

9.3
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where the r, are the positions of the electrons labeled

by s=1,2,---, N. The quantity #, is the Fourier
transform of the interaction potential and, in the
present case of Coulomb interaction, it is given by

b = 4me?[QK2, 4
where Q is the volume of the system. The discrete
spectrum of values of k is determined by the usual
periodic (cyclic) boundary conditions. The prime on
the summation in (9.1) denotes the omission of the
term for k = 0, which implies electrical neutrality for
the system as a whole.

Although Procedure 2 (see Sec. VII) is conceptually
more complicated, it is simpler to work out; for this
reason, it is considered first. Here, the observables are
chosen to be the function p, for all k. The subsidiary
averaging operation ( )" is chosen to be the averaging
in the free-particle canonical ensembile, i.c.,

(g(X)) = f dXg(X)e 5o / f dXePHo, (9.5)

In the case of Procedure 2 we consider a more general
Hamiltonian than (9.1):

H=H, + Z ¢:Pk + %%’ vlpep—r — po)> (9.6)

where the term Y ¢*p, corresponds to an arbitrary
potential of external force and where v, = &i,,.

The next part of the procedure is to consider the
equations of motion of the p, using the general
Hamiltonian H. Because the p, are even ‘in the
momenta, it follows that £p, will be odd in the
momenta; therefore, the latter quantities will have
vanishing projections in the OM. For these reasons
we consider the second time derivatives of the p;:

Pr = £2py. 9.7

Application of the lepst mean square error closure
principle to the right-hand side of (9.7) gives

pr = Pl = —(c*k® + 038)p — (KPpo/m)he,  (9.8)
where ¢ = 1/(fm)? is the isothermal velocity of sound

and

= (4ne*N/mQ)}
is the plasma frequency. After canonical averaging we
obtain the approximate result

0= -"(‘32k2 + w$5)<Pk> - (k2P0/m)¢k

{pr) = —Bpodrl(l + f/ﬁ)k2)’ 9.9

where 1, = (4we?fN/Q)t. The above equations
[(9.8) and (9.9)] have been linearized with respect to
the ¢, since the final result involves only small values
of the ¢, . With the use of (7.6¢) and (7.9) of Sec. VII,
we obtain

or

04/08 = —}Ne*t}/2,, (9.10)
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and
04 1 Ne

A—Ag=|datZE =_=
° fofas 34,

the well-known result of Debye.*

In the case of Procedure 1, we choose a different
set of observables, viz., py, and g, = pyp_ — po for
all unvanishing k, but employ the same subsidiary
averaging operation ( )'. The general Hamiltonian is
now chosen to be

H=H,+ 1> 0.,
where, as before, v, = £6,.

The equation of motion for the g, (using the second
time derivative for the same reason as before) is

= L20,. (9.13)
Applying canonical averaging, we obtain

(G = 0 = —(2k*[mB) o)

(9.11)

(9.12)

k , :
- m * g U ({PeP—qirP-1) + (P—aPa—1Pr))

9.14)
The least mean square error closure procedure applied
to the unaveraged product p,p__.;p_; gives

PPP—gikP—k = Oy + O_gpp + 04 + po.  (9.15)
It was also shown in Sec. VI that this result is the
Fourier transform of the linearized version of the
Kirkwood superposition approximation. Substitution
of this approximation for the triple product of p’s
gives

:«2(/3 " N?v)< -8

+ “m—Q k- % quilow), q # k. (9.16)

Transforming the last result into r space we obtain the
more familiar result

r r
where f(r) = 1 — g(r), the radial distribution function,
is related to the (o) by the expression

:kr
(N Z( oxe

In (9.17) A, = (47r/3pe2§)"} is the Debye length and
y = e’fA7} is the dimensionless plasma parameter,
both quantities corresponding to an electron charge
reduced by a factor &2,

In another paper,5 Eq.(9.17) is derived (directly from
the BBGKY hierarchy) and solved to yield thermo-
dynamic properties over a wide range of y.

— 1)é(r), (9.17)

g(r) = N 9.18)

4 See, for example, I. Z. Fischer, Statistical Theory of Liquids
(University of Chicago Press, Chicago, 1964).

5 L. C. Levitt, J. M. Richardson, and E. R. Cohen, Phys. Fluids
10, 406 (1967).
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The eigenfunctions of the kernel of the Lippmann-Schwinger collision equation, corresponding to
outgoing waves in all channels, are used to obtain an expansion of the T matrix valid for multichannel
collisions, including rearrangements, From this expansion, the transition amplitude in the general case
of overlapping resonances is obtained and a characterization of bound states and resonance states is

given,

I. INTRODUCTION

NE of the most important methods for the
description of resonances in collision processes
was developed originally by Kapur and Peierls' for
finite range potentials; it is based on a modification
of the usual boundary conditions for scattering. Later
on Siegert® described a similar method for a single
channel s-wave collision that had the advantage of
avoiding the dependence of the resonance parameters
on the initial relative kinetic energy of the particles
and on the radius chosen to impose the boundary
conditions. His approach was extended by Humblet
and Rosenfeld® to the multichannel case, by using a
Mittag-Leffler expansion for the collision matrix.
More recently Herzenberg and Mandl* proposed an
alternative expansion in terms of the eigenfunctions
of a modified Schrédinger equation with the Kapur—
Peierls boundary conditions, which is more explicit
than the Mittag—Leffler expansion.

In the present contribution we want to preserve
these advantages, using the Lippmann-Schwinger®
equations of collision theory as a starting point. The
origin of the modified Schrodinger equation is then
clearly seen, the expression for the T matrix is valid
for multichannel collisions, including rearrangements,
and it provides a unified description of bound states
and resonances. Our main purpose is to present a
simple and yet general formalism to describe reso-
nance collisions, rather than to provide mathematically

* This research was supported by the National Aeronautics and
Space Administration Grant NsG-275-62.

t Present address: Department of Physics and Institute for
Radiation Physics and Aerodynamics, University of California,
San Diego, California.

1 P. L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166, 277
(1938).

2 A. J. F. Siegert, Phys. Rev. 56, 750 (1939).

3 J. Humblet, Mem. Soc. Roy. Sci. Liege XII, 9 (1952); J. Humblet
and L. Rosenfeld, Nucl. Phys. 26, 529 (1961); see also R. G. Newton,
J. Math. Phys. 1, 319 (1960).

4 A. Herzenberg and F. Mandl, Phys. Letters 6, 288 (1965);
A. Herzenberg, K. L. Kwok, and F. Mandl, Proc. Phys. Soc.
(London) 84, 477 (1964).

5 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950);
B. A. Lippmann, ibid. 102, 264 (1956).

rigorous proofs. Section Il deals with the expansion
of the 7 matrix, which is used in Sec. III to obtain
the resonance formula and to characterize bound
states and resonances. Section 1V discusses briefly the
connection with other approaches.

II. EXPANSION OF THE T MATRIX

Let us consider a collision process described by a
Hamiltonian

H=H,+V=K+h+7, (1)

where X is the relative kinetic energy of the incoming
particles, / the Hamiltonian for their internal motion,
and ¥ the interaction potential. We can also write, in
terms of the variables for the outgoing particles,

H=H,+V =K + 1 + V', ®)

with the corresponding meaning for K’, #’, and V.
Defining a channel as the set of all the internal states
corresponding to given particles, we restrict the
treatment to channels with not more than two particles,
whose interaction potential is zero for the interparticle
distances r > ry, or r' > r;. If P is an operator equal
to one when r < ry and r’ < r, and zero otherwise,
then

V=PVP and ¥'=PV'P. 3)

The transition amplitude between the.states @,(F)
and ¢, (E), solutions of

(E—Hp)p,=0 and (E—Hog, =0 (4)

for the noninteracting incoming and outgoing particles,
respectively, is given by the T matrix element 7,. It
is the same® whether we use the operator

T=V+ VG, (5)

with Gy(E*) = (E + ie — H)™, €—0+4, or the
similar operator

T =V + T'G,V. (6)

¢ M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
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In what follows we use Eq. (6), which is equivalent to
I'(@) = V'[l = G(@¥], M
where z indicates a complex energy. We can now
generalize previous treatments by introducing the
solutions of the equation
1@)y(2)) = GV [9(2))

with the boundary conditions

(Y@ P lp(2)) = N(z) (finite) )

and with |y(2)) giving asymptotically outgoing waves
for all the channel states. This is an ¢igenvalue problem
with complex boundary conditions which defines
eigenfunctions |y, (z)) and complex eigenvalues 7,(z).
Indicating with JC the time reversal operator, we write

5o lya(2)) = [9a(z*)) (10)

and obtain from Eq. (8), for the eigenvalue 7,,(z),
FuZN VY 9 m(2)nn(2)

= Pa@I VGV lyu(2). (11)

Applying X to the Hermitian conjugate of Eq. (8)
written for #,(z), and then taking the scalar product
with V' |y,,(2)), we get, after subtracting the result from
Eq. (11),

®)

[nm(z) - nn(z)]«/—)n(Z*)l VI’(/Jm(Z)> =0, (12)
which shows that we can always choose
PuENV [9(2)) = a2 (13)

to replace the usual orthogonality condition. We also
find immediately from

Nm(2) = (Yu(@*) Vipa(@)™
X @u@N VGV lpul(z)) (14)
Nm(z*) = [7,,(2)]*. (15)

Using Eq. (15) we can write the completeness relation
for the eigenfunctions of Eq. (8) in the form

=3 |9 (D hu()] KPn(z¥)] V,

that

(16)

valid when applied to any state having, in general,
incoming and outgoing waves at infinity.* From this
relation we obtain an expansion for 77(z):

T'(2) =3 11 — 0DV’ [,(2))
X [h (DT @z V. (17)

Equation (17) is the main result of this section. It
provides a general expression for 7'(z) from which
the transition amplitude could be obtained by putting
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z=E*+=FE + ie, e—0+. Nevertheless, the im-
portance of this equation seems to arise from its
connection with the description of resonance collisions,
which is studied in the following section.

1. THE RESONANCE FORMULA

Let ¢,(z) be the state obtained from ¢,(E) by
giving complex values to the energy and restricting
the corresponding wavenumbers to values with a
positive real part. The matrix elements

Toi(2) = (2| T'(2) |9u(2)) (18)

will, in general, have a cut for positive real z since for
those values the operator to the right in Eq. (8) is
unbounded. Also, it is seen from Eq. (17) that T,.,(2)
will have poles for z, = E, — ', with E, and I,
real, such that

Ma(z,) = 1, (19)
in which case Eq. (8) reduces to
(. — H) |pa(z,)) = 0. (20)

Accordingly, E, and I, are interpreted as the energy
and linewidth for the pair of particles in the compound
state |y,(z,)). Calling W, the ath eigenvalue of 4, the
complex channel wavenumbers &, corresponding to
the energy z are given by

k:z = [(2/‘/&2)(2 - an)]% = Ky — M’a’ (21)

where u is the reduced mass of relative motion and
we choose «, > 0 to make &, a uniform function of
z. In terms of these quantities we can write

E'n = VV:: + (hz/zlu)('(?m - j'::2m)
and Fn = (2h2/lu)'<anlan . (22)

Besides, Eqs. (15) and (19) imply #,(z*) = 1, so that
z} will also be a resonance pole. Indicating with &, the
set of wavenumbers {k,,} and putting |,(z,)) = |¥x,)»
we find that the compound states |y_,.) are the
ones corresponding to z¥ . They contain only incoming
waves at infinity and describe the compound state in
(20) when time is reversed.” It follows from this that
the restriction «, > 0 does not imply any lack of
generality. »

Expanding the nth term of T,.,(z) in a Laurent’s
series at z,, we get

Tool2) = T(2) + Tor(2), (23)

? The compound states |wk¥) must be ruled out because, in
accordance with the last paragraph of this section, they should
correspond to bound states if the |y,,) were resonance states, and
reciprocally.
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where
Ta(2) = (z — z,) (—dn,[dz,) ™
X (@2l V' |pulz D haz,)]
X Pzl V 19(za)) (24)
is the singular contribution or the resonance part,
while 7, (z) is regular around z, and it is called the

potential part. To find dn,/dz, we write Eq. (8) in the
equivalent form '

{Hy + [1.(17V — 2} lya(2)) = 0,
which implies

0 = (d[d2)(Fu(z*)| [P(z — Ho)na(2) — V]lyn(2)-
(26)
Differentiation for z = z, leads immediately to

_dnn/dzn = [hn(zn):rl[(l/-)n(zz)l P I"pn(zn)>
— (Pu(Z)| [P, Hy] |dy,(2)/dz,).

This quantity is different from zero except for very
particular potentials, so that z, can be considered in
general as a single root of Eq. (19). Since T%(z) is
well-defined for real z, we can obtain the transition
amplitude putting z = E* in Eq. (23), provided
I, <|E,— E,.|. If, on the other hand, T, >
|E, — E,,|, the resonance behavior at energy E will
change due to contributions from overlapping
resonances contained in 7, (z). Expanding each term
of T,.,(z) contributing to the overlap in a Laurent’s
series at z,, the general resonance formula is

(25)

@27)

. -1

ToolB) = T + 3 (E = .+ 1T
@z V' 192X B2 V [ 9(2,))

(FulZ P lpu(z.)) = (Fu(20)] [P, Hal ldy,Jdz,)

(28)

with the sum extending over overlapping resonances.

This equation contains as particular cases the Bethe—

Peierls formula® for a resonance at very low energies

and the Breit—-Wigner formula® for narrow resonances.

- Furthermore, E, and I', are given explicitly in terms
of |y,(z,)) by the relations

E, = [N)]I7' (.2 V [9,(2.))

and
Fn = [Nn(zrz)]_1<1/)n(zn)| I[P9 Ho] W)n(zn))’ (29b)

which are obtained by taking the scalar product of
Eq. (20) with {y,(z,)| P. By a similar procedure we

8 H. A. Bethe and R. Peierls, Proc. Roy. Soc. (London) A149,

176 (1935).
% G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).
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also obtain
(Fa@ZD V 1 9ulz,)) = (Fo(z0)] [P, Hol lpa(z,)) (30a)

and

<(Pa’(zn)| VI Iwn(zn)> = <(Pa’(zn)l [H(’)s P] I‘lpn(zn»'
(30b)

Since the operator [P, H,] (the operator [H,, P]) is
different from zero only at r =r, (at r' =r,), the
left-hand sides of Egs. (29b), (30a), and (30b) can be
expressed in terms of the values of the wavefunctions
at the potential boundaries, which are usually called
channel amplitudes.

We can now get some more results and the con-
nection with previous developments by making
explicit use of the condition of outgoing waves at
infinity. Indicating with u,(x) the «th eigenfunction of
h, we define, for the incoming particles,

ul(S) = Yi{(@)uy(x), €)))

where w gives the direction of the interparticle vector
r and ¢ = (a/m). With similar definitions for the
outgoing particles, the wavefunction (r,x|y)=
%(r, X) is given by

w3 = Py (0 = 3200 5),

=320 us)

¢’

(32a)

and
1/)ext(l's X) = (1 - P)’P(l', X),

=320+ 3200) Gm)

in the interior and exterior regions of space defined by
P and 1 — P, respectively. In Eq. (32b)

0(r) = ik,rh{V(k,r) ~ exp i(k,r — 3lm), (33)
r—=w
where A is the spherical Hankel function of first
class,'® and we have used the orthogonality property
of u, and u, in the exterior region.!* From the con-
tinuity of the logarithmic derivative of y (r) at r = r,,
we get

[Elyy_:(/ri)rl:f [doi:(/;‘;‘r],zrf Likyre),  (34)

with Ly(k,re) ~ ik, for |k,rel > 1. Using this quantity

10 The changes required to deal with the Coulomb interaction
in resonance scattering can be found in Ref. 3 and in J. Humblet,
Nucl. Phys. 50, 1 (1964).

11 M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964), Appendix C.
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we can write Eq. (29b) for the linewidth in the form

= (3 farvaor) 3 (- )
< dryeni 70 = 1, dd—;]ym(r),

= (3 [[ar o)
x 3 (= )i Lh v, @9

where 0(r, — r) is the step function and the subscript
n indicates z = z,,. Equation (35) can be transformed
by means of the relations®

Ll(kanrﬂ) - Ll(kanro)* = i(kan + k:n)Ml(kanrO)
+ (kiw — ke Ni(kro),  (362)

Ml(kanro) = Iht()l)(kanro)/hgl)(kanro)|2’ (36b)
Nl(kunro) = lrﬂk:nhgl)(kanrﬂ)l_l

P
X 2_:0[2(1 = 2p) — 1 [y a(kero)l?,  (36¢)

with Ny(k,.7o) = 0 and P = 3/ — }[3 + (—1)']. The
result is

(37

Ly =3 (3 e P 3 e

Fan = (hzllu)'(am lz Ml |Ym("0)|2/lz Wen s (38)

where
To
Won = f dr 9P + Ny [yen(ro)l.

Here I',, is the partial linewidth for decay of the nth
compound state into two particles in state «. We can
compare Eq. (37) with the second Eq. (22) to obtain,
provided «,,# 0,

Aen = 5 z M, I,Vcn("o)|2/lz Wen (39

m m

so that ,, is nonnegative for «,, # 0. The same will
hold for any other state b 3 a since I', will then be
nonnegative, as seen from Eq. (22). In this case

lw,(z,)) will describe a system decaying in all channels
and it is called a resonance state. With respect to W,
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the resonance may be called proper if «,, > 4., (or
E,— W,>0) and virtual if «,, < 4,, (or E, —
W, < 0). The solutions with 1,, negative will exist
only for «,, = 0. In such a case I', = 0 and |y,(E,))
will represent a bound state with energy E, =
W, — B22,]2p).

IV. DISCUSSION

Our treatment has been based on the solution of
Eq. (8), that is, the eigenvalue equation for the kernel
of the T matrix equation, with the boundary condi-
tions specified by Eq. (9) and by the requirement of
outgoing waves for all the channel states. As a result
we have arrived naturally at the modified Schrodinger
equation (25), previously used in the literature. We
could have started our study with Eq. (5) rather than
Eq. (6) to obtain similar results in terms of the out-
going-particle variables. The present approach should
be compared with those of Meetz!? and of Wein-
berg,'? which are based essentially on a symmetrized
form of Eq. (8) and impose as a boundary condition the
finiteness of (y,| V" |y,).1* The definition of resonance
energy and linewidth in both cases are different, and
the one given here, which coincides with the Siegert—
Humblet definition, leads to a simpler computational
problem for determining E, and I',, namely, the
solution of Eq. (20) with the boundary conditions of
Eq. (8). We have restricted ourselves to finite range
potentials. The effect of an infinite range in ¥ and V'
will depend on their dependence on r and r’, but
Eq. (17) can be expected to hold if these potentials go
to zero at infinity faster than any exponential.
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This paper deals with the combined Klein-Gordon-Maxwell-Einstein field equations, which govern
completely and self-consistently the spinless, charged, gravitating matter distribution, One of the
theorems that have been proved here states that, from a static, purely gravitational universe, a class of
electrogravitational universes containing a stationary matter field can be constructed, provided a single
differential equation is satisfied. The construction of the electrogravitational universe from the Schwarz-
child solution hinges on the solubility of the ordinary differential equation

U” + o?(x csch? x)*U? = 0,

where the prime denotes differentiation and «? stands for the fine-structure constant, Next, the following
nonlinear eigenvalue problem related to this differential equation has been posed. Are there some positive
values of « corresponding to which solutions U(x) exist such that (i) U is analytic and positive in
x € (0, ] (=> the volume element has one sign), (i) U(0) = O (this condition is physically unpleasant
but forced by the differential equation itself), (iii) U’(e0) = 0 (=> no force at the center of spherically
symmetric mass and charge distributions), (iv) U’(0) = « (=> the total charge of the material distribution
is ®)? The answer is “yes” and it has been rigorously proved that there exists a unique solution of the
problem. The corresponding value of « comes out to be 1.4343(/c)}, which, unfortunately, does not agree
with the experiment (the discrepancy may be attributed to the neglect of the second quantization). If the
restriction in U(x) to be positive is withdrawn, then a countable number of solutions exist with the
corresponding eigenvalues for the electronic charge, internal energy, and mass. These solutions give
rise to universes which are topologically inequivalent to Euclidean space and contain a finite number of
shells. It should be mentioned that the present eigenvalue problem appears as a consequence of the
“Weyl-Majumdar” condition on the electrogravitational universe. There may well exist other eigen-
value problems for the fine-structure constant within the framework of the Klein-Gordon-Maxwell-
Einstein field equations without the “Weyl-Majumdar” condition. *. . . es kann dann in jedem Punkte
das Kriimmungsmass in drei Richtungen einen beliebigen Werth haben, wenn nur die ganze Kriimmung
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jedes messbaren Raumtheils nicht merklich von Null verschieden ist . . .”—Riemann.

I. INTRODUCTION

ARIOUS attempts have been made to arrive at a
completely field-theoretic, nonsingular description

of matter. Wheeler! and his school have offered a
purely geometrical description of matter. Finkelstein?
has presented extended models of particles with
internal rotational motions. Some nonsingular models
of particles from the solutions of the field equations,
derivable from the quadratic action principle in
general relativity, have been constructed by Lanczos.?
One of the authors (A. D.)* introduced the complex
scalar field in general relativity to replace the usual

* Work supported by the NSF Grant GP-4323 and Research
Grant DA-ARO-D-31-124-G 680 Army Research Office (Durham).

t Present address: Department of Mathematics, Simon Fraser
University, Burnaby, B.C., Canada.
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and phenomenological description of matter in the
right-hand sides of the electromagnetic and gravita-
tional equations. De?® has followed up the investigation
of the combined Klein-Gordon-Maxwell-Einstein
field equations. The present paper starts with the
same set of combined field equations to be investigated
under more general conditions than in Das* and De.?

The first of the theorems states that the system of
the coupled, nonlinear, partial differential equations,
representing the combined fields, is derivable from
a variational principle and the second proves the
determinateness of the system of the equations. The
third theorem deals with the static electrogravitational
fields generated by stationary matter for which no
specific spatial symmetry is assumed. It is shown
that the Weyl-Majumdar® relationship

gu=1I[1+% (477')%144]2

® N. De, Progr. Theoret. Phys. (Kyoto) 33, 545 (1965); Nuovo
Cimento 39, 986 {1965).
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between the metric tensor g,, and electrostatic poten-
tial 4, implies «* = m?®, where «, m are the charge and
mass parameters, respectively. This condition physi-
cally means that inside the matter there is a balance of
forces between the electrostatic repulsion and the
gravitational attraction. The fourth theorem proves
that the vanishing of the curvature invariant in the
3-space, conformal to the Weyl-Majumdar electro-
gravitational 3-space, implies that (i) the original 3-
space is flat, (ii) the wavefunction is a constant, and
(iii) the combined field equations boit down to a single
differential equation. The fifth theorem, which is the
most pertinent for the subsequent sections, proves
that from a given static, purely gravitational universe
one can construct the Weyl-Majumdar electro-
gravitational universes containing matter, if a single
differential equation is satisfied.> Three examples are
presented, of which the first one starts from the flat
universe (trivially gravitational) and the relevant
differential equation is V2 = —A%%, where V2 is the
Euclidean Laplace operator and A% is a positive
constant. The solutions of this equation have infinite
oscillations; the correspondingelectrogravitational uni-
verses consist of an infinite number of shells and hence
seem to be physically not feasible. In the third example,
the purely gravitational universe is due to the finite
number of concentric and coplanar rings, and the
corresponding differential equation (4.17) which has
to be satisfied is quite complicated. The investigation
of this equation is postponed for a future occasion.

The second example deals with the well-known
spherically symmetric universe of Schwarzchild, and
the related differential equation is*

U” + o¥(x csch? x)2U3 = 0.

Rigorous and exhaustive investigations of this differ-
ential equation have been carried out. The funda-
mental theorem, which solves a nonlinear eigenvalue
problem, proves that there exists a unique positive
constant « and a unique solution U(x) of the last
differential equation in x €[0, c©), such that (i)
U > 0for 0 < x < o (= the volume element is one,
signed), (i) U(0) = 0,

(iii) imU'(x) =0

T+ 0

(= no force at the center of spherically symmetric
matter distribution), (iv) U’(0) = « (= the total
charge is «). The proof of this theorem is preceded
by 13 lemmas, of which the fifth one solves the initial
value problem U’(0) = a, U(0) = 0 of the differential
equation with help of the contractive mapping
theorem. The seventh theorem states that there exist

solutions which have finite numbers of zeros and
asymptotically approach straight lines.

The theoretical bounds for the eigenvalue have
been ascertained and the actual number « = 1.4343
is obtained by solving the boundary value problem
with the help of the computer. The disagreement of
this number with the experimental value o«? = 137
may be due to neglecting the second quantization and
other relevant fields. It may also be possible that the
correct value will come out of a different eigenvalue
problem when the Weyl-Majumdar requirement is
discarded.

The next section is devoted to the discussion of the
physical, geometrical, and topological properties of
the universes permitted by the differential equation.
The universe corresponding to the nonnegative solu-
tion U(x) is topologically Euclidean. The universes
corresponding to the solutions with a finite number of
zeros are topologically inequivalent to the Euclidean
space and are comprised of onionlike shells.

It should be mentioned that in recent years many
investigators” have not considered the usual topology
for the physical space.

The main theme of this paper is posing the nonlinear
eigenvalue problem for the fine-structure constant
(and observable internal energy) and showing that a
countable number of eigenvalues exist. It is an
interesting outcome that the logarithmically divergent
electrostatic self-energy does not affect the internal
energy levels. Physical properties of these particles are
found to be similar to geons. There is no reason
why these particles will not be created in very
high-energy interactions (such as in a nova or the
quasi-stellar sources), and therefore their existence is
predicted.

II. DEFINITIONS AND NOTATIONS

‘(1) V, denotes a four-dimensional Riemannian
manifold and physically represents the space-time
universe of the events. A point x € ¥, has the real
coordinates x* (where i and the other Roman indices
take 1, 2, 3, 4). ¥, denotes a x*-constant submanifold
in ¥, and represents a spatial universe. A point
X € V; has the real coordinates x* (« and other Greek
indices take 1, 2, 3).

(2) V, has index of inertia —2, i.e., the metric form

O & g (x) dxe dx?

7J. L. Synge, Dublin Lectures (1947); J. P. Vigier, Phys. Rev.
Letters 17, 39 (1966); D. Finkelstein and C. W. Misner, Ann. Phys.
6, 230 (1959); E. C. Zeeman, “The Topology of Minkowski Space,”
Cambridge University Preprint (1965); D. Finkelstein, J. Math.
Phys. 7, 1218 (1966); D. Atkinson and M. B. Halpern, ibid. 8,
373 (1967).
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is reducible at any point to ® = —(dX)? — (dX?)* —
(dX?)?® 4 (dX*)?2 Here and subsequently the summa-
tion convention is followed.

(3) The Einstein tensor which represents the energy-
momentum-stress density is defined by

Gi; = Ri; — 38R,

where R;; and R stand for the Ricci tensor and the
curvature scalar.

(4) The vector field A‘(x) defined on ¥V, represents
the electromagnetic potential and the corresponding
intensity field is defined by

F; & V:'Az' - ViAJ' =A;;— A

Here V, and V, denote, respectively, the covariant
and the partial differentiation with respect to x*.

(5) The complex scalar field w(x) is defined on ¥,
and y*y represents, in a way, the matter density
(asterisk stands for the complex conjugation).

(6) The combined Klein—-Gordon-Maxwell-FEinstein
field equations in ¥, are defined as

kY [D'D, + m*ly(x) = 0,
M &V, Fii 4 (4m)bia(D¥ip* - p — p*Diy) = 0,
(2.1a)
G; + 8x[Dyp" - Dy + D;k'»”*' Dy
— g:(D**y* - D,y — m*y*y)
— FuF5 + 18:FuF*] = 0,

(F) E,¥

where
D, ¥V, + (4m)biad,,

« and m are the charge and the mass parameters.
The units are so chosen that % = ¢ = G = 1, and all
the physical quantities are expressed as pure numbers.

There are also the additional constraints on g, and
A;, the so-called coordinate conditions and the
Lorentz gauge condition:

Ci(gab) =0,

FI
) £4f YV 4% = 0.

(2.1b)

Physically, these equations represent completely
and self-consistently the spinless, charged, gravitating,
unquantized matter field under its own electro-
magnetic and gravitational interactions.

1. THEOREMS ON THE COMBINED
KLEIN-GORDON-MAXWELL-EINSTEIN
EQUATIONS

Theorem I: Let D be a bounded simply-connected
domain of ¥, which is covered by a single coordinate
system. Let d(D) be the orientable, piecewise-smooth

A. DAS AND C. V. COFFMAN

boundary of D. Let the fields y(x), 4,(x), g%(x) be
C? with detg;; <0 in D and on 9(D). Let an in-
variant action integral on D be defined® as

A ‘géffD [R + 167(D**p* - D,y — m*yp*yp)
— 47F®F,,] d,

where dw is the invariant volume element in V.
Then the Euler-Lagrange equations which are
obtainable from the variational equation 84 =0,
with 8y(d(D)) = 64(A(D)) = dg®(0(D)) = 0, are
the field equations (F).

Theorem II: Let D be a domain of ¥, which is
covered by a single coordinate system, where the
functions w(x) is C2, A(x) is C3, g,; is C* (n > 3).
The system of coupled, nonlinear, partial differential
equations (F) with the constraint (F’) is a determinate
system in D.

Proof. The number of 16 unknown functions can
be exhibited as

1(Re p) + 1(Im ) + 4(4,) + 10(gy,).
The number of equations is 21, namely,
I(K) + 1(K*) + 4(M7) + 10(E;) + 4C)) + 1(£).
However, there are five differential identities?:
I(V,Mi = 0) + 4V,E¥ = 0).

So there are 16 independent equations. Therefore the
system is determinate.

IV. THEOREMS ON STATIC ELECTRO-
GRAVITATIONAL FIELD GENERATED BY
STATIONARY MATTER FIELD

Definition 7: The static electric field is characterized
by the following:

A4x) =0, ¢ A4(x), Fy=0, Fu=0,.

Definition &8: The static gravitational field is charac-
terized by!®

D = g 4(x) dx* dxP + f(x)(dx*).

8 The integrand is invariant under general coordinate trans-
formation and also under the gauge transformation

y = yettmbapw 41 = 4, — @a

® A. Das, Ref. 4. These identities represent, respectively, the
differential conservations of charge—current vector and energy-
momentum-stress tensor.

1¢ Such a universe admits one parameter group of motion along
x4 lines. Also, V; is a totally geodesic hypersurface of ¥,. Cf.
L. P. Eisenhart, Riemannian Geometry (Princeton University Press,
Princeton, New Jersey, 1949), p. 183.
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Definition 9: The stationary matter field is charac-
terized by

4
iRk
b

y = x(x)e x=21%

where E is a positive number representing the energy
of the matter field.

Lemma I: Let D be a domain of V,, a x*-constant
hypersurface of the static V. Let x(x), @(x), gq5(X),
f(x) be C? with g & det g,, < 0, f(x) > 0 in D. Then
the field equations M* = E,; = 0 identically (physi-
cally meaning, there is no current or momentum flow).
Also, (F) = (F) in D, where (F) is the following:

KeE = (—gy (- g)te?y.),
+ [m? — fYE + (4m)tag)y = 0,

M = (—g (- )tep ), — S .0,
+ 2(4mYE + @miaglyt = 0,

F)  Bu= 31— (=23 — [ uf 5]
+ 8=[2{E + (411)*0((79}2)(2
— m¥yt — 4g%9 051 =0, (4.1)

Eaﬂ = Raﬂ + 877[21’9,%’[3 - ngaﬂxz _f_l(p,a(p»ﬂ

+ %f_lgaﬂgya(p,y(p,él = 0’
where
def

i = Ei; — 38uEN,.
Definition 10: The Weyl-Majumdar® static electro-
gravitational universe is characterized by

Fx) = Flp(x)] = [1 + (4m)ig]

Theorem III: 1et D be a domain of ¥, which is a
x*-constant hypersurface of a Weyl-Majumdar uni-
verse. If the assumptions and the consequent field
equations (F) of the Lemma I hold in D, then «? =
m? = E% Moreover, (F) = (F) in D, where (F) is
the following:

Ke—iEm‘ — (g.—ig-a x,a),ﬂ = 0’
(FWVE, = g—%(g—%gaﬂy’a)’p + 873V = 0, (4.2)
Eup— &upFas = Ry + 16my,95 = 0,

where V = f‘*, 8ap = — V724, R,pis the Ricci tensor
constructed out of g,,.

Proof: The Weyl-Majumdar condition f(x) =
[1 + @mip(x)]? yields

fa= F2(4nf)bp,. (4.3)

Substituting (4.3) into (4.1), the following is obtained:
—%(477)_#%%_21‘4 t+ Bm) Iy 2Ey,

= +d4n(x? — m?)[p(x)]2 — (4m)P2m? + o F 3E«)

X @(x) + 2E2— m*F Ex)=0. (4.4)

Since (4.4) is satisfied for yx € D, the coefficients of
¢ @ must vanish separately, i.e.,

a2 — m? =0,
2m2 + o F 3Eax = 0,
2E? — m? F Ea = 0.

=o? = m? = E%

(4.5)

From the physical conditions the choicem = E > 0
should be made. The condition a = +m physically
implies an equilibrium inside matter due to the mutual
actions of the electrostatic repulsion and the gravita-
tional attraction. The second part of the theorem
follows if (4.3) and (4.5) are substituted in (4.1).

Theorem IV: Let V, be a x*-constant hypersurface

of a Weyl-Majumdar universe ¥, with
O = —V?g,,dx*dx? + V(dx*)>?

Let the conditions of the Lemma I and the field
equations (F) hold in V;. If we define a manifold?,,
which is conformal to ¥, by the metric form @ =
£.p dx* dx?, then the vanishing of the curvature invari-
ant R = R® with y 3 0 implies that (i) y is a constant,
(i) V,; is flat, and (iil)) (F) = V2V = —A2V3, where
the constant 1 = (4m)day and V2 is the Euclidean
Laplace operator.

Proof: From the previous theorem it follows that
o = m? = E? and (¥F) holds in V;. Then

B4 — 3B, =R+16mg%.2,=0. (4.6)
The vanishing of R yields
%uts = 0. 4.7

From the assumption ¥V, has index of inertia —2, it
follows that V3 is a negative-definite and V; is a
positive-definite Riemannian manifold.

Therefore 3 a coordinate system in D of V3 5

(_I') = ePl(x)(dxl)z + ePg(X)(dx2)2 + ePa(X)(dxs)z.

In this coordinate system (4.7) becomes

e ()" + e ()’ + e (1) = 0. (4.8)
The positive definiteness of (4.8) implies y , = ¥, =
%3 = 0=y is a constant. But y is a scalar field.
Therefore y is a constant in any coordinate system.
So, in general,

(4.9)
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In three-dimensional Riemannian space like Vj,
the necessary and sufficient condition for flatness
is the equation (4.9). Therefore V; is Euclidean, and
the only surviving equation of (F) reduces to

E,= V2V 4 22V3 =0, (4.10)

where the constant A2 = 4ma?y?, and V2 is the
Euclidean Laplace operator.

Definition 11: Purely gravitational field equations
are defined as (Fy): R;; = 0. The universe oV, where
(Fy) is satisfied except at finite number of singularities,
is called a purely gravitational universe.

Lemma 2: Let the metric form

(DO — _e—w(x)gaﬂ(x) dx® dx*? + ew(x)(dx4)2
represent a static gravitational universe. Then the
field equations (Fy) = (F,), where (F,) is the following:

OEaﬂ = j{aﬁ + %w,aw,ﬂ = 0,
—2L4 = Q_%(Q%Q‘zﬂw,a),p =0,
0E4a = 09

where R,; is the Ricci tensor constructed out of
8.p and g = det g,g.

(4.11)

Theorem V: Given a domain D, of a x%-constant
hypersurface ¢V, of static, purely gravitational uni-
verse 4V, 3 the metric fields w(x), g,4(x) are C? with
g > 0 in Dy, then a domain D of a hypersurface ¥,
of a Weyl-Majumdar universe V, containing the
stationary matter field can be constructed with y(x) =
3(87)4(x), £.5 = G4p, provided 3a V(x) % 0 which
is C? and satisfies

i), + sV =0 (4.12)

in D,.

Comparing (4.2) and (4.11), the proof of the theorem
follows immediately.

Corollary I: Given a domain D, of ,V; of a flat
oV [where (F,) is satisfied trivially] with the metric
form

D, = —eHdx* dx*) + e (dx")?

(k being a constant), a domain D of V; of a Weyl-
Majumdar ¥, can be constructed with

y=10m), © = —Vidx*dx®) + VYdx*),
provided 3 a ¥(x) # 0 in D that satisfies

VIV + 22173 = Q, (4.13)
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where the constant A2 = }a242. [Note that (4.13) is
same as (4.10).]

Corollary II: Given a domain D, of a spherically
symmetric oV in oV, with the Schwarzchild’s metric
form!

Do = —(1 + k[x)'[(dx?)? + (x* dx?)?
+ (x!sin x2 dx?)?] + [(x! ~ K)[(x* + k)]’ (dx*)z,
k being a constant, a domain D of ¥, of a Weyl-
Majumdar ¥, can be constructed with
261 = @t n [ — B/(x* + k)],
D = — V21 — (k/x")?PP[(dx1)* + (x! dx?)?
+ (¢ sin x% dx3)?] 4 V2(dx*)?,
provided 3 a V(x) # 0 which is C? in D and satisfies
v 2 k* av
ot [ o e

2 1_ pyy2
+ az[{l - (i‘)} In {ﬁi——k)” Y3 =0. (4.14)
. x]. | (xl + k)
With a coordinate transformation
x = —In[(x! — k)/(x* + k)],
the last equation and the metric form go over to*

@ = — U?[(csch? x dx)? + (csch x dx?)?
+ (cs¢h x sin x2 dx®)%] + U2(2k dx*)?,
U” + a®(x csch? x)2U3% = 0, (4.15)
where the prime denotes differentiation with respect
to x. Changing the names of the coordinates to
0 = x?, @ = x3 t=2kx* the metric assumes the
following form:
@ = — U2?[csch? x(dx)? + csch? x(d6? 4+ sin? 6 dp?)]
+ U~%drt. (4.16)

U(x) = 2kV(x?),

Coroliary 1II: Let a domain D, of an axially sym-
metric, static, purely gravitational universe due to N
concentric rings at x* =0 “plane” with “radii”
0< p<ps < "< py and masses M;, M,-- -,
My, be given by the metric form

(DO — _e—-2).(aa1,m2)[e2v(ml,zz){(dx1)2 + (dxz)z}
+ (x' dx®)?] + 4dx"?,

= =23 ()R] - (]
Pa= (R P+ (g, = (8 — p)f o+ (R

1 Isotropic coordinates have been used. The case of the cylin-
drically-symmetric static gravitational field due to a finite rod can
be transformed into the Schwarzchild’s form [cf. N. Rosen, Rev.
Mod. Phys. 21, 503 (1948)]. Thus Corollary II covers the case of
finite rod too.

where
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K is the elliptic integral of the first kind with the
modulus 1 — (g,/p,)%
¥(x1, x?) is given by the line integral

X2 = fc[xl{(z,l)z — (Ao} dx' + 24,4, dx?],

where the path C is a piecewise-smooth curve and it
does not pass through any of the ringlike singularities
of A(x1, x?).

Then a domain D of V, of a Weyl-Majumdar
V, can be constructed with

A ) = Bt S (!‘—4—) K[l - ("—)]

n=1\ Py Py
O = — VI (@R + (@x) + (PR + V-,

provided 3 a ¥V(x%, x%) # 0 which is C*? in D and
satisfies

Vi + (xl)—lVg + Ve
~ 22
- —aze“[z (%)K[l - (-‘L”] V3. (@.17)
=1\ Py P
Remarks: In the one-dimensional case the general
solution of (4.13) is in terms of the elliptic function
V(x?) = —adn[2a(34x* + b), £]. In the spherically
symmetric case this equation boils down to one of
the Emden equations. In general, a solution of (4.13)
will have infinite numbers of zeros implying infinite
numbers of singularities in the metric form. This
feature makes this class of solutions physically un-
acceptable. The differential equation (4.17) is compli-
cated, and its study is postponed for a future occasion.

The subsequent section is solely devoted to the exhaust-
ive investigation of the differential equation (4.15).

V. EXISTENCE AND UNIQUENESS THEOREMS
FOR THE DIFFERENTIAL EQUATION
U” + a®{(x csch? x)2U° = 0
This section is devoted to the proof of the following
fundamental result concerning the differential equation
which appears in the title above.

Theorem VI: There exists a uniquely determined
positive constant « and a uniquely determined function
U = U(x) in C?[0, o0} such that

(i) U(x) is positive for 0 < x < o,
(ii) U satisfies for 0 < x < oo the differential equation

U" 4 a*x csch? x)2U% = 0, 5.1
(iii) U satisfies the boundary conditions

U@) =0, U0) =g, 5.2)
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and

lim U'{x) = 0.
Conditions (5.1) and (5.3) imply that U(x) has a
finite limit as x — co:

(5.3)

lim U(x) < oo.

0

(5.4)

If U(x) is any solution of the equation (5.1), then
y(x) = aU(x) is a solution of

v” + (x csch? x)%® = 0. (5.5)

Thus, for the sake of simplicity, in most of the analysis
to follow we direct our attention to Eq. (5.5). For
convenience we put p(x) = (x csch? x)2

Lemma 3: Let y(x) be a solution of (5.5) defined on
an interval 7 in (0, c0). Then the function

D(x) = (¥ ()Y + Ep()(y(x))*
is a decreasing function of x on I.

Proof: If we differentiate ®(x) and use the fact that
y is a solution of (5.5), we obtain

D'(x) = Ip' (D))
= x csch? x (1 — 2x coth X)(y())*.

Since 2x coth x > 1 on (0, o), it follows that p'(x),
and hence also ®'(x), is negative on (0, o).

Lemma 4: Let x, > 0 and let @ and b be any two
real numbers. Then on the interval [x,, co) there
exists a unique solution y(x) of the initial value
problem

Y(xo) =a, yxo)=b (5.6)
for (5.5).

Proof: Local existence and local uniqueness follow
from the fact that the term p(x))® satisfies a local
Lipschitz condition in y. If y{x) is a solution of the
initial value problem on an interval [x,, x;), 0 <
Xo < Xy < 0, then, by Lemma 3, both y and y’ remain
bounded on [x,, x,); therefore y and p" can be extended
continuously to [x,, x,]. It follows that y(x) can be
uniquely extended to the right indefinitely as a
solution of (5.5).

We also need the following resuit.

Lemma 5: For any real number a there exists one
and only one function y(x) which is of class C? in
[0, o0) and is such that

Y0 =a, y0)=0,

and which furthermore satisfies (5.5) in (0, o).

(5.7)
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Proof: It follows from Lemma 3 that y(x) = 0 in
[0, o0) is the unique CZ?solution of (5.5) and (5.7) when
a = 0. Because of the fact that — y(x) is a solution of
(5.5) whenever y(x) is, it suffices to prove the lemma
for a > 0. We suppose from now on that a is a
fixed positive number. Let x, > 0 be so chosen that

xp
24a2f x*p(x) dx < 1. (5.8)
o .
[Notice that x3p(x) = x5 csch® x tends to zero as x
tends to zero.]

Let C = C[0, x,] denote the Banach space of con-
tinuous functions u(x) on [0, x,} with the usual norm
ful = max |u(x)|
0<z<xp
forueC. Let B= {ue C: ||lull < 2a}, and define an

operator T on B by

[Tul(x) = a —Lm(l - i) s p()u*(s) ds. (5.9)

For u, v € B, from (5.9) we obtain

&4
ITull < a + 84° f "$*p(s) ds (5.10)
[1]

and
175 = 7ol < [59(6) 1u(9) = o06)
Ju%(5) + u()(s) + oKs)| ds
< 120* u — o] “p(6) ds.

It follows from this inequality and (5.8) and (5.10)
that 7 is a contractive mapping of B into B. There-
fore, by the contractive mapping theorem of Banach,!?
there is a unique function we B satisfying, for
0 S X S x09

w(x) = a —J:(l - j_c) s p(s)w*(s) ds.  (5.11)

The function y(x) = xw(x) is a solution of (5.5)
and (5.7) on [0, x,]. By Lemma 4 it can be extended
to [0, o). If, on the other hand, y is any solution of
(5.5) and (5.7) on [0, c0), then for x, sufficiently small
the restriction to [0, x,] of w(x) = x~y(x) belongs
to B and satisfies (5.11). Local uniqueness of a solution
of (5.5) and (5.7) thus follows from the uniqueness
in B of the fixed point of 7. Uniqueness in the large
follows from Lemma 4.

We denote by y(x, a) the solution of (5.5) which
satisfies the condition (5.7). For every real a, y(x, a)

12 A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of
Functions and Functional Analysis (Graylock Press, Rochester,
New York, 1957), p. 43.
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is defined for 0 < x < co; it is clear that y(x, —a) =
"}’(x, a)-

Lemma 6: If a is any real number, then, for 0 <
x < oo,
[y(x, @)| < laf x. (5.12)

Proof: When a solution y(x) of (5.5) satisfies the
conditions (5.7), the associated function ®(x) defined
in Lemma 3 is continuous at x = 0. It follows from
Lemma 3 that for y = y(x, a)

(V'())? < O(x) < D(0) = a®
Therefore |y'(x, a)| < |a| for all x on (0, ). Now

(5.12) follows, using (5.7), from an integration of
this last inequality.

Lemma 7: Let y = y(x) = y(x, a) for some nonzero
real number a. Then y(x) has, at most, finitely many
zeros on [0, c0) and y(x) and y'(x) satisfy the asymp-
totic formulas

y@) = Bx +  + o(1)

Y'(x) =B+ o(l),

(5.13)
and
(5.14)

as x — o0, where

f=a- f ")y ) dx, y = f " xp(x)y(x) dx.
(5.15)

Proof: Lemma 6 shows that the improper integrals
in (5.15) are convergent. Our discussion of (5.11) shows

that
09 = x(a | x(l =)oy ds).

Hence

9 = x(a = [ “pr'e ds) + ] sn9r0) ds

+ f "% — 9p(e)y*s) ds,

and (5.13) and (5.14) follow. The o(1) terms in these
two asymptotic formulas can thus be estimated more
explicitly. Indeed from the equation immediately
above and Lemma 6 there follows

y(x) — (Bx + I < Ialafw(s — x)s’p(s)ds  (5.16)
and :

Ye) — Bl < laP f “Sp(syds.  (5.17)

&

Notice also that, if § and y are both zero, then

y(x) =Lw(x — 5)p(s)y¥(s) ds.
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Thus for 0 < x, < o we have

max [p(x)| < max |y(x)|

oS x<co zo<az<w To

“laf? s°p(s) ds,

and we must therefore have y(x) =0. A similar
argument shows that, in fact, the constants in (5.13)
uniquely determine a solution of (5.5).

From Lemmas 4 and 5 it follows that the zeros of
y(x) are isolated in [0, o). Since a 7% 0, § and y are
not both zero, and thus because of (5.13) all of the
zeros of y(x) lie in some bounded subinterval of
[0, o). Consequently, y(x) has only finitely many
zeros. This completes the proof of Lemma 7.

The sequence of results just proved is required
primarily for the proof of the uniqueness assertion in
Theorem VI. At this point we give a proof of the
existence assertion of Theorem VI. The work to
follow depends strongly on the results of Moore and
Nehari.1®

We let £ denote the class of those functions y(x)
which are locally absolutely continuous and not
identically zero on [0, o), whose first derivatives
belong to L0, o), and which vanish at x = 0. From
Holder’s inequality we have, for y € €,

)l < x*( f “Or ds)%

. Therefore we can define a functional J(y) for y in £ by

10 = ( [Cor dx)z( j "yt dx)_l. (5.19)

From (5.18) there follows, for y € £,

J) > (J;wxzp dx)—l.

For n=1,2,:--, let p,(x) be defined by p,(x) =
Pl + DL 0 < x < 1fn + 1), po() = p(x), x >
1/(n + 1). For each positive integer z let £, denote the
class of functions in £ which do not vanish identically
on [0, n]. Then on each £, we define

1.0 = ([[oras) ([[oas). 621

The results of Moore and Nehari'® imply that for
each n there is a function y,(x) of class C2 on [0, n],
positive on (0, n), and satisfying the following con-
ditions.

(5.18)

(5.20)

13 R. A. Moore and Z. Nehari, Trans. Am. Math. Soc. 93, 30
(1959).
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(1) y, minimizes J, with respect to £,:

J.(yo) =inf J (y) =

V€L
(¥, as yet is only defined on [0, n]; hence it does
not belong to £.)
(2) y, satisfies the differential equation

Yo+ payi=0 (5.22)

and the boundary conditions

Yul0) = yy(n) = 0. (5.23)
We note that if y € L satisfies (5.5), then

f () dx =f py* dx,
0

so that °

100 =[ "0 ax (5.24)

for y, a solution of (5.5). Similarly, for the functions
¥, we have, because of (5.22),

Ty = f ") dx.

We extend the definition of y,(x) to [0, ) by putting
Ya(x) = y,(n) for x > n. Thus extended, each y,

(5.25)

belongs to £,, and y, minimizes J, in £,,. It is clear that
=Jo(Vn) 2 J0t1(¥n) 2 T 1(Pni) = My . (5.26)
For a given y € £ we obviously have
lim J,(y) = J(y); (5.27)
therefore, e
me(y) =limM, =M, (5.28)

n—+ow

By (5.25) and (5.26)

f Y)ldx =M, <M;, n=1,2,---, (529
0
so that, by (5.18),

}’n(x) S (Mlx)é‘) h= 1, 2, e (5'30)

Since y;(x) = 0 for x > n, one has

yix) = — f "payis) ds, 0< x <. (5.31)

From which it follows, using (5.30), that the sequence
{y,(x)} is uniformly bounded on (0, «); in fact,

lyu()| < M} f " p(s)s? ds.

x

(5.32)

Equicontinuity of both {y,} and {y,} follows from
(5.30), (5.31), and (5.22). Thus, by Ascoli’s theorem,*

14 A. N. Kolmogorov and S. V. Fomin, Ref. 12, p. 54.
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there exists a subsequence {y, (x)} converging uni-
formly on compact intervals to a nonnegative solution
Yol(x) of (5.5); the subsequence of derivatives {y, }
converges to y,, uniformly on compact intervals. The
term on the right-hand side of (5.32) is square inte-
grable as a function of x, so it follows from Lebesgue’s
dominated convergence theorem that

[omeon ax = tim ["Gieox a = .

By (5.20), M, > 0. Therefore y,, is not the trivial
solution of (5.5). Thus we have the following result.

Lemma 8: There exists a function y,, in the class £
such that

J(¥) = min J(y).
yel

The function y,, is a solution of (5.5) on (0, o), is
positive in (0, o), and

92(0) = lim y,,(x) = 0. (5.33)

The proof of the uniqueness assertion in Theorem
VI depends on a study of the initial value problem
(5.7) for (5.5)—in particular, on a study of the depend-
ence of the solution y{x, @) on the parameter a. This
study is based on the use of the variational equation
for (5.5):

A" + 3p(x)A(x)A = 0. (5.34)

Solutions of the variational equation have the same
asymptotic behavior as solutions of (5.5). More
specifically we have the following.

Lemma 9: Let a be any real number and let y(x) =
¥(x, a) in (5.34). Then (5.34) has two linearly inde-
pendent solutions A,(x) and A,(x) satisfying, respec-
tively, as x — o,

Al(x) =x+ 0(1),
Ay(x) =1 + ofl),
A,(x) is uniquely determined by (5.36).

Al(x) =1+ o(),
Agx) = o(1).

(5.35)
(5.36)

Proof: Because of (5.12) we clearly have

fwxp(x)yz(x) dx < .

The existence of A, and A, then follows from a theorem
in Hartman.?® The uniqueness of A, follows from the
fact that any solution of (5.34) must be a linear
combination of Aj and A,.

15 P. Hartman, Ordinary Differential Equations (John Wiley &
Sons, Inc., New York, 1964), p. 380,
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Assume that ¢(x) is continuous for 0 < x < 0.
The differential equation

v + glx)p =0 (5.37)

is said to be disconjugate on the interval J in [0, c0)
if no nontrivial solution of (5.37) has more than one
zero in J. We have occasion to use the following
disconjugacy criterion, which is a consequence of the
Sturm comparison theorem.

Lemma 10: Let J be a finite or infinite open interval
in [0, o0). Then (5.37) is disconjugate on J if there
exists a function w which is positive and of class C* on
J and satisfies

w' +glxyw <0 on J

If the above condition holds and if either J is un-
bounded or if w” + g(x)w # 0 on J, then (5.37) is
disconjugate on the closure of J.

Proof: See Hartman.®

Lemma 11: Let a and y(x) in (5.34) be as in Lemma
9. Let Ay(x) be the unique solution of (5.34) satisfying
(5.36) as x — o0. If A, changes sign in (0, 00) and if
X, is the largest positive zero of A,, then [x;, ) is a
maximal interval of disconjugacy for (5.34).

Proof: Assume that x;, > 0 can be defined as above.
Then A,(x) is positive on (x;, ©); and by the Sturm
comparison theorem!'” no solution of (5.34) can have
more than one zero in {x,, o) and (5.34) is dis-
conjugate there. Let A; be a solution of (5.34) with
a zero in (x,, o0). Then Aqis linearly independent of A,
and, therefore, by Lemma 9, must have the asymptotic
behavior

Ag(x) ~ px,

u#0, asx— oo,

We can choose Aj; so that x4 > 0, A; will then be
positive for large x; and since it can have just one zero
in [x,, 00), it will be negative at x,. Let 0 < x; < x,.
Then for any positive number €, A = A, — eA; will
be positive at x,; and since A, changes sign at x,, if €
is sufficiently small, A will have a zero.in (x;, x,).
However, because of (5.36), A has the asymptotic be-
havior A~ —eux as x— oo; consequently A has
at least two zeros in [x;, o). Thus (5.34) fails to be
disconjugate in [x,, o) for any x; < x,.

We now adopt the following notation. For a real
number a, let A(x, @) denote the solution of (5.34),
with y(x) = y(x, a), which satisfies the initial con-
ditions

N@O)=1,

16 p. Hartman, Ref. 15, p. 362.
17 P. Hartman, Ref. 15, p. 335.

A(0) = 0. (5.38)




o AND THE COMBINED KLEIN-GORDON-MAXWELL-EINSTEIN EQUATIONS 1729

Let § = f(a) and y = y(a) be defined by (5.15), with
y(x) = y(x, a). Because of Lemma 9, A(x, a) has the
following asymptotic behavior as x — oo:
Alx,a) = pux + v + 0(1), A'(x,a) =pu + o(l).
(5.39)

Lemma 12: For any real number a, y(x, a) and
y'(x, a) are differentiable with respect to @ and

(0/0a)y(x, a) = A(x, a), (0/da)y'(x, a) = A'(x, a).
(5.40)

Furthermore, f(a) and y(a) are differentiable with
respect to a and

(dda) = u,

where u = u(a) and v = »(a) are the coefficients in
(5.39).

(dda)y = v, (5.41)

Proof: The first assertion of this lemma does not
follow from the standard theorem on differentiability
with respect to initial conditions because of the
singularity of the coefficient p(x) at x = 0. The proof
of the standard theorem!® can, however, easily be
adapted to this case. We omit these details here. One
obtains in fact

¥(x,a") — y(x,a) = (@ — a)[A(x, a) + o(a’ — a)]
(5.42)
and
y'(X, a,) - }”(x, a)

= (a' — a)[A'(x,a) + o(a’ — a)], (5.43)

uniformly on compact intervals.
The coefficients u and v satisfy

wa)y=1-13 f ® py(x, DA, a) dx,

wa) = 3fwxp(x)y2(x, a)A(x, a) dx.
0
So if we use (5.42) and (5.43) in (5.15), (5.41) follows.

Lemma 13: Let a be such that y(x, a) is positive on
(0, o) and B(a) = 0. Then A(x, a) has precisely one
zero in (0, o0), and u(a) < 0.

Proof: Let a be as in the statement of the lemmaand
let y = y(x, a), A = A(x, a). We show first that A
has at least one zero on (0, ). From (5.5) and (5.34)
we have

y'A — A"y =2py3A.

18 p, Hartman, Ref. 15, pp. 95-96.

Integration of this inequality, using (5.7) and (5.38),
yields

YAX) — A(x)p(x) = 2 f “d)VSACs) ds.

Ubpon letting x — oo, we obtain, since §(a) = 0,
—ua@) = 2[ “HOYONE ds.  (544)

The assumption that A(x) >0 on (0, «) implies
that
wla) =limA'(x,a) > 0
w0

and also that the integral on the right in (5.44) will
be positive. Since y(a) > 0, this yields a contradiction;
so A(x) must change sign at least once on (0, c0).

Now let x; be the uniquely determined point where
y'(x) = y(x). In order to show that A has at most one
zero in (0, oo) we show that (5.34) [with y(x) = y(x, a)]
is disconjugate in [x;, ) and also in [0, x,]. Take
w=7y—y’;then w> 0 on (x;, cc) and

w” + 3pytw = (2p + p')R.
Since
(2p + p) = x®csch* x[2 + (2/x) — 4 coth x] < O
on (0, o0), it follows from Lemma 10 that (5.34)
is disconjugate on (x;, ©). Next take w,(x)=
—@(x)w(x) where @(x) is a positive C2 function on
(0, o). Then w, satisfies

wi + 3py’w; = —pol2 + (In p)’ + 2(In ¢)']y*
— Q¢ — ¢")y — ¢"y. (5.45)

Since w < 0 on (0, x,), in order to prove that (5.34)
is disconjugate on [0, x,] it suffices to find a positive
C? function which satisfies, on (0, c0),

2 + (Inp) + 2(ln ¢)’ > 0, (5.46)
2¢' — " >0, (5.47)
¢" > 0. (5.48)

Take ¢(x) = xe*. It is easily verified that (5.47) and
(5.48) hold and that 2 + (Inp)" + 2(In @)’ = 4[1 +
(1/x) — coth x] > 0 on (0, ), so that (5.46) holds.
Thus from (5.45) we have

w! 4+ 3py*w; <0 on (0, x,).

So, by Lemma 10, (5.34) is disconjugate on [0, x,]. It
follows that A has precisely one positive zero x, and
Xy > X, . Since x, > x;, [x,, 00) cannot be a maximal
interval of disconjugacy for (5.34). Hence it follows
from Lemma 11 that A is linearly independent of the
solution Ay(x) of (5.34), which has the asymptotic
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behavior (5.36). Thus we must have u(a) < 0. This
completes the proof of Lemma 13.

Let A4 denote the set of all positive real numbers
a for which y(x, a) has at least one zero in (0, ) and
let B denote the set of all positive real numbers a for
which y(x, a) is positive in (0, c0) and f(a) > 0. From
the continuous dependence of y(x, a) and f(a) on a
it follows that 4 and B are open. We show that
A and B have a single common limit point a,, and
A = (ay, ) and B = (0, a,). The uniqueness asser-
tion of Theorem VI follows in an elementary way once
this has been shown. First let @ be such that y(x, a)
is positive on (0, o) and f(a) = 0. By Lemma 8 there
is at least one such a, and by Lemmas 12 and 13
(d[/da)p(a) < 0. It follows that for @’ in a neighbor-
hood of a, f(a’) > 0 for a’ < a and f(e’) < 0 for
a’ > a. Clearly, if a’ >0 and f(a’) < 0, we have
a’ € A. Thus it follows that a’€ 4 for @’ > a and 4
sufficiently near to a. On the other hand, using the
fact that f(a’) > 0 when a’ < a and o’ is sufficiently
close to a, it follows from (5.42) and (5.16) that y(x, a’)
is positive on (0, oc), and thus that ¢’ € B whena’ < a
and a’ is sufficiently close to a. In other words, we
have shown that a is the right end point of an interval
in B and the left end point of an interval in 4. Now
suppose that a is any positive number which does not
belong either to 4 or to B. Then y(x, a) must be
positive on (0, ) and f(a) must be zero; so, by the
argument just given, @ must be the left end point of an
interval in B and the right end point of an interval in 4.
Since 4 and B are open, it follows that there can be
just one such point a,, and that A4 = (a4, o),
B = (0, a,).

In view of the definitions of 4 and B, the charac-
terization of these sets which we have just obtained
implies that there is precisely one solution y(x) of
(5.5) which vanishes and has a finite derivative at
x = 0, is positive on (0, o), and for which

lim y’(x) = 0.
The unique solution U(x) of the eigenvalue problem
(5.1)-(5.3) is obtained by taking U(x) = a~lp(x),
where
o= (y'(0) =a}.

Since the solution y(x) = y(x; a,) of (5.5) is actually
the solution whose existence was proved in Lemma 8,
we have the following theoretical upper bound for «:

«= 'O < (ML["¥hpt0 dx)*;

cf. the derivation of (5.32). An arbitrary test function
in £ can be used in J to obtain an upper estimate for
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Ve
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F1G. 1. The solutions U(x). (a) The solution U(x) corresponding
to the fundamental theorem. [The method used to compute U(x) is
described in the Appendix.] (b) The qualitative plot of the solutions
U(x) corresponding to the initial value problem U(0) = 0, U'(0) =
a. The bold lines correspond to the critical initial slopes of the
solutions which cross x axis a finite number of times and then tend
asymptotically to a flat line. The amplitudes of the oscillations
increase, whereas the crossing slopes decrease, with x.

M, . A lower bound for « can be obtained as follows.
Let a be any positive number; then

V(x,a) = a.—ﬁmp(s)y"(s) ds.

So from (5.12) it follows that

V'(x,a) > a(l - azj;mp(s)s3 ds)

on an interval (0, x,), provided y(x) remains positive
on that interval. Consequently, if

a< (J:op(s)s3 ds)'%

then y* and y must remain positive on (0, c0). There-
fore @ € B when (5.49) holds. This gives

x=at> (Laop(s)s3 ds)—}.

The value of « obtained from the computer was
1.4343. For a graph of the function U(x) see Fig. 1.

(5.49)

We conclude this section with a theorem concerning
the existence of additional solutions of the problem
(5.1)~(5.3).

Theorem VII: For each integer n > 0 there exists
a constant o = «, and a C? function U = U,(x)
which has exactly » zeros in (0, co) and satisfies (5.1),
(5.2) and (5.3), with « = «,,.

The proof of this theorem is not given. For a
related result the reader is referred to Theorem VII
of the paper of Moore and Nehari® quoted above.
A proof of our Theorem VII above can be based on
their results in much the same way as was the proof
of the existence assertion in Theorem VI.
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i R(r) —
Schworzchild's
Cone

2(d)

R(r} —
2(¢) 2(9) 2(h)

Fi1G. 2. The properties of the universe. (a) The exact solution of
the fundamental theorem. (b) The qualitative plot of the radial
length R(r) versus r. (c) The qualitative plot of the circumference
of a circle versus r. (d) The qualitative plot of the ratio of the cir-
cumference divided by the radial length versus R(r). (¢) The
two-dimensional symbolic representations of ¥;. To regain the sup-
pressed dimension, the circles should be replaced by the spheres.
The arrows indicate the radial and transverse stresses. The black
spot at the lowest tip indicates that the elementary flatness is
violated there. (f) The symbolic representation of V,. The proper
time AS along a ¢ line increases as r increases. (g) The qualitative
plot of the radial null lines in V,. (h) The qualitative plot of the

radial mass density p = joM:ﬁ(—g’)} d0 dp and the radial charge
density = j‘j,n‘(——g’)s‘: df dg against r. The broken line denotes the
radial density 2 corresponding to the constant unit density.

V1. PROPERTIES OF THE UNIVERSES
OBTAINABLE FROM THE SOLUTIONS OF
U* + o®(x csch? x)2U3 = 0

The properties of the permissible universes discussed
are threefold, viz., (i) geometrical (in the Riemannian
sense), (ii) topological, and (iii) physical. For this
purpose the coordinate transformation r = cothx — 1,
u(r) = U(x), is made so that in the new system the
metric (4.16) assumes a simpler form:

D= —w2[drt 4+ r(r+2)
X (d0® + sin? 6 dp?)] + w2 dt.

In the first place the universe corresponding to the
solution in the fundamental theorem (VI) is discussed.
For the geometrical properties of this universe a t-
constant hypersurface ¥V, is dealt with first, followed
by a discussion of the universe ¥, (Fig. 2).

[2u~[u~tu" —
(RPH =10
K 0
0 o 0
IimRPH =0 —a?
e 0 0 —a?

6.1y

(IA) The geometrical properties of V¥, are the
following.
(@) (—g")t = w?r(r + 2)sin 6 > 0,
for 0<r< o, 0<O<m.
(b) The total volume is

T

lim 47rf u’r'(r' + 2)dr' = ©
r—>o 0

(logarithmically divergent).

(c) The radical distance R(r) = [fudr is a

monotonically increasing function of r. Moreover,

lim R(r) = o
(logarithmically divergent).
[(b) and (c) show that V; is open.]

(d) The length of the circumference of a circle
at the radial distance R(r) is 27u[r(r + 2)}}, and this
starts from zero, growing monotonically up to the
finite value 2ma.

(e) The ratio of the circumference divided by
the radial length is

27ulr(r + 2)]’}/J:u dr.

It starts with infinite slope, decaying monotonically
to zero.

(f) The area of a sphere at the radial distance R(r)
is 4muPr(r 4+ 2), and it starts from zero, growing
monotonically as R increases up to the finite value
47a®. [“There is not so much elbow-room in distant
parts as Euclid supposed.”]

(g) The solid angle that a spherical surface
subtends at the origin is

Amir(r + 2) / ( fo u dr)z,

and it begins with the infinite slope, decaying mono-
tonically to zero.

(h) The geodesic deviation between two adjacent
radial geodesics (r lines are geodesics in ¥ and ¥7)
is 7 = u[r(r + 2)I!Aw (the metric of the unit sphere
being dw? = db* + sin? 8 dg?). 5y grows monotonically
from zero up to dAw.

(i) The Ricci curvature tensor of Vy is

A u W+ D)+ N = (r+2)2 00
w4 3u e+ DY + 27

0l,
W A+ 3um (e + DN 4+ 2)7Y
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The metric of V5 has a singularity at r — oo, but the
Ricci curvature tensor is regular there, showing that
the singularity of the metric is only a coordinate
singularity.
(IB) The properties of V; are the following.
(@) (—g)t = w2r(r + 2)sin 6 > 0.
(b) The total space-time volume of ¥ is

r
lim 417f f wir(r'4 2)dr dt’' = o
r— oJo
t— o0
(quadratically divergent).
(c) The ¢ lines are not geodesics in V,, except the
one at the spatial origin. The distance along a ¢ line
between two ¢-constant hypersurfaces grows mono-
tonically to infinity as the radial coordinate r of the
t-line increases.
(d) The radial null geodesics are characterized
by the equation
,
t—t0=f utdr.
To
The slope of the null curve dr/dt = u~* increases
monotonically to infinity as the r or ¢ coordinate
increases. :
(e) The surviving components of the Riemann
curvature tensor!® in V), are given by

Rygog = —uPr(r + 2)sin2 0[1 — r(r 4+ 2)
X {u ' + r(r + D/r(r + 2)}7),

Rygye = uPr(r + 2)[uv" — wu'? + w'u/

X (r+ D/r(r + 2) — r23(r + 2)72),
Ry313 = sin® ORyyy,,
Rygg = v 2w u" — 3u2u'?),
Rogoq = u?r(r + 2)[u 2w’ + u=/(r 4+ 1)/r(r + 2)),
R3434 = sin® ORyg04 -

I1. The topological properties of the universe are
the following: ¥V, is topologically Euclidean, and in
this sense it is simpler than the spatial hypersurface
of Schwarzchild’s universe, which has a ‘“handle’ ;20
the ¥V, under consideration can be embedded into
a four-dimensional flat space.

III. The physical properties of the universe are
the following.

(a) Let an idealized observer (“‘eyeless, headless
mannikin!”) at rest with the radial coordinate r
compare his proper time with another observer at the

1% J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960), p. 271.

20 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).

21 If the Schwarzchild’s radius & in (4.15) is chosen to be k =
$u(0) = 0.487, then the ‘‘time coordinate” ¢ will be the proper time
for the observer at rest at the origin,
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origin.2! He would discover that, between the same
“time coordinate” lapses, his proper time runs much
faster than his compatriot at the origin. The spectral
lines emanating from distant sources at rest will, con-
sequently, appear displaced towards the violet to the
observer at the origin. '

(b) A ray of light traveling radially from the
origin along a null geodesic takes only a finite
proper time

To = u_l(O)f u®dr
0

of the observer at the origin to complete the journey
through the infinite distance. This is because the ve-
locity of light (so far as the observer at the origin can
assess) increases monotonically to infinity as the light
recedes from the origin. [It is needless to mention
that the local velocity of light according to the local
measurements is always 4-1.]
(c) The condition

limU'(x) =0

(cf. Theorem V1) implies that

lim du _ 0

ro0 dr
in view of Eq. (5.17). For the physical meaning of
this condition, consider the radial equation of motion
for a neutral test particle governed by a timelike
geodesic:

d?r|ds® = 2u=3(dujdr), ds*= —u?dr®* + u?ds®

From this equation it is evident that the radial
acceleration and force at the origin of the spherically
symmetric universe is zero.

(d) The “‘uniplanar” (6 = }=) timelike geodesics,
which represent the motions of the neutral test
particles in V,, are given by the inversion of the
formula

@ — @y = —f [r(r + 2){u*h 3 (E®u* — 1)
_ r—l(r + 2)—1}]—i d’.’
=f [Uh~%E*U? — 1) — sinh® x]"% dx,

Zo
where h and E represent constant areal velocity and
energy, respectively.
(e) Let the combined material and electro-
static stress-energy-momentum tensor be expressed
as —(87)71G", = M“, + &,. Then the surviving
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FiG. 3. Properties of the universe corresponding to u(r) having
five zeros. (a) The qualitative plot of u(r) with five zeros (and initially
flat slope) versus r. (b) The qualitative plot of the radial length
R(r) versus r. The curve oscillates four times. (c) The qualitative
plot of the circumference of a circle versus r. The curve is oscillatory,
and the negative parts should be interpreted as oppositely oriented.
(d) The ratio of the circumference divided by the radial length
versus r. The curve has singular behavior at five points. (¢) The
two-dimensional symbolic representation of V3. The suppressed
dimension can be regained by replacing the circles by the spheres.
There are five shells, and a common point between two adjacent
shells is denoted by a black spot where the ratio of the circumference
divided by the radius becomes infinite. (f) The qualitative plot of the
radial null line. The shaded slits correspond to the boundaries
between two adjacent shells. So far as the observer at origin can
judge, light penetrates these boundaries with infinite speed. (g) The
qualitative plot of the radial charge density

o= J Jan(—g")t db dop

against the radial distance R(r). It shows that the sign of the charge
density alternates from shell to shell.

components of this tensor are given by

= —8= =8 =8, =@8n"uu?

My = —Mi=—Mi=—@m) w7 +2)7%,
M = (16m)%®[In (1 + 2/r)P

+ @m) W +2)7
where the prime denotes differentiation with respect
to r. The electrostatic stress-energy—-momentum tensor
&, has the usual algebraic relations for the spherically
symmetric case. The material stress tensor M7, is
shear free, but not a simple pressure. There exists a
sphere on which the electrostatic stress is exactly
canceled by the material stress.

M?*, stands for the material density. It can be ex-
pressed as M4, = (M*, + M* , where

oM = (16m)~1[m In (1 + 2/r)]2.

M?* = (4n)'m?x® is the purely material density,
and ,M* = (8m)u~2~%(r 4+ 2)~? denotes the material
stress-energy density. The total purely material mass
J «M4(—g")? dy exactly equals m. But both the total
material stress energy and the electrostatic energy are
logarithmically divergent.

(f) The usual condition of the square integrability
of Schrodinger’s wavefunction y cannot be taken as
such into the general relativity due to the general
covariance of the theory. A condition like the finite-
ness of the total mass does not overcome the difficulty
either—because there is no satisfactory definition of
the total mass in the general relativity. The only
satisfactory condition of the square integrability
emerges from the definition of the total charge and
by equating the charge?®® to «, i.e.,

f j4n4 d3u
Vs

= iocf (D*y* -y — yp*Diy)n* dyv,
Vs

= 2ot2fV w*y)g“ dav,

3

- _ f " + D) + 2Ar + DN+ 27 dr,
0

- —wa"(x) dx = U(0) = o,

where j, is the charge density, n? is the unit vector on
the hypersurface V7, and condition U’(0) = o has been
taken into consideration in posing the nonlinear
eigenvalue problem (cf. Theorem VI).

The various properties of the universe ¥, construct-
ible out of the solution u(r) which has finite numbers
of zeros and asymptotically goes to zero, have been
graphically summarized in Fig. 3. The main difficulty
with such a model is that the metric and also the
Ricci curvature tensor are singular at a zero of u(r).
But light can penetrate smoothly through the various
shells, though the “coordinate velocity” of the
penetration is infinite. A ¥ in such a universe com-
prises the finite number shells like an onion,
with alternately positive and negative charge distri-
butions. Unlike the ¥, corresponding to the funda-
mental solution, the space under consideration is not
orientable—there is no well-defined interior to the
sphere. The illustration of Wheeler and Misner! can
well be applied in such a space. Suppose a hypothetical
criminal is locked up inside a spherical jail in the
first shell of V. If the radial coordinate of the sphere
is increased, the sphere will eventually contract to a

22 The common usage of. o for the fine-structure constant has
been changed to o2,
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point [the black spots of the Fig. 3(e)], and it will
begin to gain size again, inside out, now in the
second shell. If the jail bird survives this choking, he
will find himself free and exterior to the prison!

Such a space V3 = V7, which is determined by one of
the solutions U, , n > 0 (see Theorem VII), is topo-
logically equivalent to the space obtained by “‘joining”
n 3-spheres one to another in a chain, like a sausage,
and then joining the last of these to a three-dimensional
hyperplane. The space which we obtain in this way
clearly is not topologically a Euclidean space. In fact,
at the points where two spheres are joined together,
the space is not even locally Euclidean. Therefore,
the question of, for example, the orientability of V7
becomes meaningless. The most significant topological
invariant associated with ¥ is the number 7 itself,
i.e., the number of spheres in the above representation
of V7. The number n can be characterized as the
third Betti number of V7.

VII. CONCLUDING REMARKS

The field-theoretic models of matter as treated
here are complete and self-consistent and emerge
from the combination of well-accepted theories.
Rigorous techniques of attacking nonlinear eigen-
value problems have been employed for the first time to
determine electrogravitational structure of elementary
particles. Existence of enumerable numbers of eigen-
values of the fine-structure constant, bare mass, and
observable energy have been proved. It is also shown
that each of these energy levels is associated with a
shell structure of matter in the range of 10732 cm.

(It is possible that the different coupling constants
of nature are different eigenvalues of the fine-structure
constant.) The total electrostatic self-energy is
logarithmically divergent, but that does not affect the
observable energy of the matter field. (The particle
appears to be bare in spite of the heavy clothing!)

The physical properties (mass~3 x 103 g, cir-
cumference ~27 X 2.2 x 10733 cm) of these particles
are remarkably similar to those of the geons. There is
no reason why these particles should not be created
in very high-energy interactions, like in the quasi-
stellar sources or in a nova or supernova, and hence
their existence is predicted.

However, there are some drawbacks of the present
theory as developed here. First, the second quantiza-
tion, which has been left out, should have been taken
into account to incorporate the uncertainty principle.
Secondly, the attempt to interpret the solutions (other
than the fundamental one) presents the following
difficulty. An assumption implicit in the method of
construction of universes is that the manifold ¥V,
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is topologically equivalent to Euclidean space.
A space topologically inequivalent to an open
subset of Euclidean space cannot be covered without
singularity by a single nonsingular coordinate system.
For such a space the traditional tensor analysis, as
used here, is inadequate. The universes constructible
from solution U(r) (other than the fundamental one)
have singular spheres pinched to a single point (the
black spots!). In these cases the universe is not a
manifold; it is, rather, a space which is locally
Euclidean (in topological sense) everywhere except
at the pinched points. Therefore, these universes
cannot be interpreted strictly within the framework
of the theory. Nevertheless, these universes are treated
as being physical, partly because they bear analogy
to the energy eigenstates of the wave-mechanical
systems, and partly due to the fact that Schwarzchild’s
universe carrying a handle (topologically not Euclidean
in the global sense) has been tested experimentally
with success.

The following problems arising out of this work
have been left open: (i) the uniqueness proof of the
solutions U(x) other than the fundamental one; (ii)
completeness of these solutions; (iii) the question
of existence of solutions U(x) with oscillatory singu-
larity at the origin (either solutions start from zero
or have oscillatory singularities, nothing else can
happen); (iv) the study of the partial differential
equation (4.17); (v) the Rainich problem for com-
bined Klein—-Gordon-Maxwell-Einstein field equa-
tions; (vi) the second quantization of these combined
field equations.
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APPENDIX

In this appendix we describe very briefly the method
used to compute U(x). It is easily verified that if
Y(X) = y,(x)is as in Lemma 8, then y(x) satisfies

Y(x) = L "0y dt + x f "oy’ dt.
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Putting y(x) = xw(x), we find that w(x) satisfies

w(x) = x”‘ft"p(t)w“(t) dt + f uot3p(t)w3(t) dt.

For convenience we consider instead the nonlinear
eigenvalue problem

Av(x) = x7! f zt“p(t)va(t) dt + j oot"p(t)u3(t) dt,
0 @
f " fa(yo(6) dt = .
0

This problem can be solved by successive approxima-
tion as follows. Beginning with a function vy(x) which
is positive on [0, o) and satisfies vy(x) = x~1 + O(x 1)
as x — o0, functions v,(x) with the same properties
are defined successively by

Aritasa(0) = x°1 f B p(0)o (D) di + f Fp(0o(e) di,
(1] x
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where
Y~ =f £ p(t)vi(e) dt.
i}

This procedure was carried out numerically, on a
computer, and was proved to be convergent to a
solution pair 4, v(x) of the above eigenvalue problem.
U(x) is obtained directly by suitably normalizing
xv(x). This method of successive approximation is an
adaptation of a method used by Nehari®® to prove an
existence theorem for solutions of nonlinear integral
equations. The use of Nehari’s method is greatly
facilitated in this case by the fact that the operator in
question is homogeneous.

28 Z. Nehari, Math. Z. 72, 175 (1959).
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A generalized WKB method is derived for the solution of the general second-order differential equa-
tion. The problem is reduced to the solution of two coupled first-order differential equations. By an
appropriate choice of auxiliary functions, the coupling coefficients may be made sufficiently small to
facilitate the solution of the coupled equations. 1t is shown that these solutions can be used in a range
of problems in which the regular WKB solutions fail. These generalized solutions may also be used to
derive asymptotic expansions of known functions. Applications of the method to higher-order differ-
ential equations are indicated, and solutions to the nonlinear Riccati equation are considered.

1. INTRODUCTION

HIS paper considers the solution of a general
second-order differential equation for which no
known solutions in closed formexist. The second-order
differential equation is transformed into two coupled
first-order differential equations. The plane wave
type “local” auxiliary solutions are first used to solve
the differential equation leading to the regular coupled
WKB solutions. Next, a ‘“local” auxiliary wave
solution of the Airy integral type is used to facilitate
* Publication of this paper is supported by a grant from the

Council on Research and Creative Work of the University of
Colorado.

the solution of the coupled equations. These lead to
the generalized WKB solutions. In each case physical
interpretations of the methods are discussed. From
these follow an alternate method to derive the coupling
coefficients that are considered as “‘differential”
transmission and reflection coefficients.

Two different iterative’ methods for solving the
coupled equations are discussed. The first yields an
infinite series expansion, and the second, an infinite
product expansion.

A physical problem for which a rigorous solution
exists is considered in Sec. 6 to illustrate the effective-
ness of the generalized WKB method. Langer’s
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NONHOMOGENEOUS MEDIUM

Ze X

INCIDENT
PLANE WAVE -

FiG. 1. Plane wave incident from below a nonhomogeneous region
with its normal in the x-z plane at an angle 8 to the vertical.

solution to this problem is also considered. It is
shown that, using the coupled differential equations
derived in this paper, it is possible to derive a
significant correction factor to Langer’s solution.
Use of this method to derive asymptotic expansions
of known functions for regions in which they are
poorly tabulated is inferred. Extension of this method
to higher-order differential equations is indicated.
Finally, the relationship between the regular and
generalized WKB solutions and solutions of the
nonlinear Riccati equation are considered.

2. STATEMENT OF THE PROBLEM

In numerous problems in electromagnetic theory it
is necessary to solve the second-order differential
equation of the form

L) =1 i(pd—(b) + K¢ =0, (1)
wdu\" du

in which ®, a scalar function of u, is related to the
field quantities; w, p, and ¢ are known functions of
u depending on the particular problem to be solved;
and k is a constant (the wavenumber for free space).
For the case in which the medium of propagation is
homogeneous, for instance, the solution for @ can be
expressed in terms of a combination of two well-
known linearly independent functions that may be
identified as outgoing and incoming waves. Further-
more, when the properties of the medium of propaga-
tion have certain particular spatial variations, it is also
possible to express the exact solution in terms of two
known linearly independent functions. But, in general,
when the spatial variations of the medium of propa-
gation are arbitrary, the solution for the field quantities
cannot be written (in closed form) in terms of two
known linearly independent functions. If, in this case,
it is attempted to write down the solution in terms of
a combination of two known functions, it will be
observed that, in general, there will be continuous
coupling between these solutions.

E. BAHAR

- As a specific example to the general equation (2.1)
treated in the paper, consider the case in which a
horizontally polarized plane wave is incident upon a
nonmagnetized ionized medium with its normal in the
x-z plane at an angle 6 to the vertical (see Fig. 1).
The ionized medium in the region z > 0 is assumed to
vary with the z coordinate only; hence the fields are
independent of the y coordinate, and, as a consequence
of Snell’s law, all the field quantities contain a factor
exp {—ikSx} in which § =sin §. Using Maxwell’s
equations, it can be shown after certain simplifications
that the differential equations satisfied by E, and H,
in the ionized medium are

OE,[0z = iknoH,, OH,[0z = (iqu/"lo)Ey’ (2.2)
7o = (of ‘9)%,

in which an exp {iwt} time dependence is assumed and
g is related to the refractive index » through the
following equation:

P=n—-S=1—-X—-S=C—X (23)

in which

X = (oyfw)? (2.4)

is proportional to the electron density and wy is the
angular plasma frequency. For simplicity, collisions
have been neglected. Eliminating H,, and omitting the
common factor exp {—ikSx} in (2.2), the following
differential equation for E, is derived:

L(E) = (@E,Jdz?) + k*g®E, = 0. (2.5)

The above equation will be treated as a special case
of (2.1), and useful physical interpretations of the
derived solutions are discussed. The problem of
solving (2.1) is frequently encountered in the field of
quantum mechanics.

3. TRANSFORMATION OF THE SECOND-
ORDER DIFFERENTIAL EQUATION INTO
TWO COUPLED FIRST-ORDER
DIFFERENTIAL EQUATIONS *

It has been seen in the previous section how the
second-order differential equation (2.5) is derived
from two first-order differential equations (2.2);
similarly, (2.1) may be represented by the following
two equations:

2~ k¥, L 1) = X g0,

u wdu o

(3.1)

in which ® and the above-defined function ¥ corre-
spond to the electric and magnetic field components,
respectively. In view of the fact that ® (and V') are
solutions of second-order differential equations, it is
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possible to express these functions as follows:
O®=0,+ P, and ¥ = (k7)™ (G, D, + G,D,),
(3.2)

in which the independent functions @; and ®, corre-
spond to the forward and backward propagating
waves in homogeneous media, and G, and G, are two
unequal functions that may be chosen arbitrarily.
Substituting (3.2) into (3.1), the following equations
are obtained:

Q] + @; = G0, + G,D,, (3.3)

G,p®; + Gyp®; = —Wk2q2®1 - szqzq)z — Gipd,
— Gyp®y — G1p'®, — Gop' D, 3.4

in which the primes denote total derivatives with
respect to u. Multiply (3.4) by 1/pG, and subtract it
from (3.3) to get
2 2 ’ ’

<I>£(1—@) — (G1+qu +Q+Gi)<l>1

G, pG, G, Gyp
w k2 q2 + gé
pG, G,
An expression involving ®, may be derived in a
similar manner. In the above equation the coefficient
of @, represents the coupling between the functions
@, and @, . Therefore, to facilitate the solution of the
coupled first-order differential equation, it is desired
to choose the auxiliary functions G, and G, such that
the coupling coefficient is equal to zero if possible.
But by setting the coupling coefficient equal to zero, a
nonlinear differential equation is obtained. In order
to transform it into a linear differential equation, the
following substitution is made:

G, = (d/du)(In g,) = gi/81,

= (d/du)(In g,) = g/g, .

It will be seen later that, with the above substitution,

G, and G, may be related to the “local” propagation

coefficient of the two independent functions ®; and

@, yet to be determined. Substituting (3.6) into (3.5),
the following equation is obtained:

- (62 + + ”;’)cbg. (3.9)

(3.6)

,_ & g
Q) — 20, + —=2——L(g)d
' &1 ' W(g., gl) P v
&1
— 81 ¥ 1(g)0,. (3.72)
W(gl »82) P s
Similarly, by interchangmg subscripts 1 and 2,
+ g2
0, — + 8L T (g0,
* 82 o W(g:, gz) P *
=—2 T g)d,. (3.7b)

W(gs, 8) P

1737

In (3.7a) and (3.7b), the Wronskian W, defined as

W(gi, 82) = —W(gs,81) = £182 — 2182 (3.8)

does not vanish, since g, and g, are assumed linearly
independent functions and L is the same differential
operator defined in (2.1). Now define the coupling
coefficients

&1
Cro= —Cp = —E1 " [(g),
" == W(gl ’ g2) P ? (39&)
82
Co=—Cp=—52 Y1),
. 21' . W(g,, gl) P '
and the matrices
Cy C 0
C=li " 12:|,®=[q)11|,andG=|:g1 :l
Co Cop 0, 0 g
(3.9b)
Thus, in matrix notation,
' — GG’ = CO. (3.10)

Now, provided g, and g, are chosen such that the
coupling coefficients vanish, the solutions of the above
equations are simply

Dy, =g1s. (3.11)

Obviously this is not the case of particular interest of
this paper, for in order to make the coupling coeffi-
cients vanish, it is necessary to find two linearly
independent solutions of L(g) = 0, which are exactly
of the same form as (2.1). If such solutions for g do
exist, there would be no point to the above trans-
formation (3.7) of the original second-order differ-
ential equation (2.1). This paper considers the problem
in which L(g) is not equal to zero for any known
function g.

Obviously, in order to facilitate the solution of the
coupled equations (3.7), g, and g, must be so chosen
that the coupling coefficients are much smaller than
the logarithmetic derivatives of g, and g,. Then
proceed by solving (3.7), using an iterative method.
In the first step solve (3.7) for ¢ and PY, assuming the
right-hand side of the equations equal to zero. In the
next step substitute ®¢ and @3 for @, and @, , respec-
tively, in the terms on the right-hand side of (3.7), and
proceed to solve the resulting first-order nonhomoge-
neous differential equation. Such a procedure can,
of course, be repeated as many times as necessary or
feasible. Physically, this iterative process corresponds
to the consideration of successive multiple reflections
in an inhomogeneous media; hence this method is not
suitable if reflections are large.

Another method for solving the coupled equations
would be as follows. After making the first obvious



1738

choice for g? and g3, solve (3.7) for ®? and @] after
neglecting the terms on the right-hand side as before.
Since in each of the above solutions only the cross
coupling terms have been neglected (the off-diagonal
terms of the matrix C), it is possible that ®? and Y
are better solutions to (2.1) than are g$ and g3. This
can be checked readily in any particular problem by
evaluating the new coupling coefficients derived from
(3.9a) on substituting g! = ®¢ and gl = ®J. This
.procedure, which may also be repeated, is employed
in the following sections, and the general formulation
of this solution is expressed as an infinite product
(Sec. 7).

In the next section several procedures for solving
(3.7) are discussed in detail for the particular case in
which L is the differential operator given in (2.5). In
the case of the more general second-order differential
equation (2.1), the discussion follows in precisely the
same manner. :

4. SOLUTION DERIVED IN TERMS OF
COUPLED PLANE WAVES—WKB-TYPE
SOLUTIONS

In general, one may express the function ¢ in its
Taylor series about its value at z = 0 (or some other
convenient point):

G2)=n—St=1—S§*Faz+az+ -

= C%+ 4,7 + ap2% + agz®, (4.1a)

in which a,, are the familiar coefficients of the Taylor
series expansion. Consider at first the case in which

g (z) = C* + 1{z) = q} + t, (4.1b)

in which |t/g3] « 1 for all values of z. Note that at the
level z = 0, » is normalized to be equal to unity, in
which case the wavenumber and the sine of the angle
of incidence at the level z = O are k and S, respectively.
In this case assume

gls = exp {Fikqoz}. 4.2)

‘Hence
L(g},) = k*1gy,. W(g}, 8) = 2ikqegigl, (4.3)

, t kt
O, + ’k%(l + “‘g)(bm =+ ——0,,. (44)
2q, 2ig,

The solution of the homogeneous equation is
@Y, = exp {ZFikf qo(l + —Lz) dz}
24,
A7 eXp {?ikf q dz}.

The above solution constitutes the well-known phase

(4.5)
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memory concept. Now L(®],) = Fik(dg/dz)D3,;
hence this solution is a good approximation, provided
that the condition

dq

&L |k*q? or
d lk*q|

;IEEI_‘!.‘ Kk
is satisfied in addition to the above requirement that
lt/g2] « 1 for all values of z.

Using the above approximations for @, and ®,,
higher-order approximations may be derived by
substituting them into the right-hand sides of (3.7)
and solving the nonhomogeneous equation. Alter-
nately, the above solution of (3.7) can be repeated,
except that this time let g} , = @} ,. Hence,

L(gi2) = Fik(dg/dz)gi., W(gl, g) = 2ikqgigs,
(4.6)

and

1 dg

1d
2o ds Ho,,==Lo,,. @7

(G} kq®
L2 £ ikq®y + — 2d

The above equations may be readily recognized as the
coupled WKB solutions for slowly varying media.l
Again, on neglecting the right-hand side of the above
equations, the approximate solutions obtained are
o, = gFexp {;fk f p dz}. 4.8).

These solutions are analogous to the upgoing and
downgoing waves. In addition to the phase memory
term, the above solutions contain a q‘i' factor that
constitutes the condition that if ¢ is real, the power
carried by these waves is constant.

Substitution of the above solution into the differ-
ential equation (2.5) yields

L(®}5) = (3(q'[9)° — Hq"[D)D1

W(D], ©}) = +2ikqDiD}. (4.9b)
Now the above solution is a good approximation,
provided that |L(D],)| K |k*q*®} ,|, from which the
following quantitative criteria for a satisfactory
solution may be derived!:

1#4q'19°) — (@"[2¢®)] K K. (4.10)

The above technique may be pursued still further
by assuming that g, , is given by the approximate
solution for @, , in (4.8). In this case the coupling
coefficients are all proportional to

[#(a'/a)* — ¥a"ID))/kq. 4.11)

1 K. G. Budden, Radic Waves in the Ionosphere (Cambridge Uni-
versity Press, London, 1961).

(4.9a)
and
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Before proceeding any further with this method, it
should be determined, for the particular refractive
index profile considered, whether the subsequent
coupling coefficients are decreasing. Alternatively,
substituting the WKB solutions (4.8) for g, , in (3.7)
and proceeding through the first iterative method
discussed in the preceding section, it is possible to
derive a series solution in which the higher-order
terms correspond to multiple reflections.~* It is
obvious that all the above solutions fail for regions in
which ¢ is very small or ¢’ is very large. In these regions
the reflection process is substantial, and therefore the
coupling between the upgoing and downgomg WKB
wave solutions is very large. Examination of (4.11)
shows that, for the regions in which reflections are
large, further iteration of the WKB solutions is of
little value.

Before attempting to derive a different set of solu-
tions, it should be pointed out that in this section the
functions g, and g, are chosen to represent the “local”
upgoing and downgoing waves that constitute the
wave solution if at each level the refractive index is
assumed constant. It is interesting to note that the
solutions derived in (4.8) may be derived directly by
considering the medium of propagation to consist
of infinitesimally thin layers in each of which »? is
considered constant. Let n, and n, be the refractive
index in two such consecutive layers. Now the
transmission coefficient for a horizontally polarized
wave traveling from medium 1 to medium 2 is

T = 2Gim _ 2Cin, L (412)
Ciny + Cony  Cyny + (n3 — n1S2)7}
in which C and S are the cosine and the sine of the
angles of incidence in the medium indicated by the
respective subscript. The differential transmission
coefficient as n, — n, + An is given by

nyny

Cy = — = ——= = e 4.13a
U dz  dn, dz S 2(Cyny)? ( )
Now
g2 =nt — §* = n} — n, S} = niCt
and
q' = 2nmni[2q,.
Hence
Cu = —q1/24,. (4.13b)

Similarly, the reflection coefficient for a wave incident
from medium 2 is

= (Cynz — Cin)[(Ceny + Ciny), (4.14)

2 . Bremmer, Physica 15, 593 (1949).

3 3. R. Wait, Electromagnetic Waves in Stratified Media (Per-
gamon Press, Inc., New York, 1962).

4 D. S. Jones, The Theory of Electromagnetism (Pergamon Press,
Inc., New York, 1964).
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and the differential reflection coefficient (correspond-
ing to coupling from a downward to an upward
traveling wave) is given as follows:

nyng 91

Cro=—"7— = 2 A"
dn, dz |, 2(Cyn))*  2qq
The other two coupling coefficients may be derived
in a similar manner to obtain precisely the coupled
equations (4.7) which yield the WKB solutions. The
second limiting quantity C,, is defined by Bremmer?
as the reflection coefficient per unit distance.

In the next section, a generalized WKB solution is
derived in which the “local”” wave solutions g, and g,
are not those corresponding to homogeneous media.
The local wave solutions will be chosen such that they
exist in a medium with a linearly varying dielectric
coefficient. The refractive index » and its gradient n’
at every level will determine the “‘constant” parameters
of the local wave solutions. This is equivalent to
considering the medium to consist of infinitesimally
thin layers, in each of which the dielectric coefficient
varies linearly (rather than remaining constant).
Hence the dielectric coefficient for the local wave
solutions is given by straight lines tangent to the given
dielectric coefficient profile. It will be seen that in this
case the coupling between these local wave solutions
is very small for the regions in which the above WKB
solutions fail.

(4.15)

2=nt

5. GENERALIZED COUPLED WKB SOLUTIONS

Consider first the case in which the gradient of the
dielectric coefficient is slowly varying; then the
function g% may be expressed as

¢ =C*+az +r(z), a=dndldz, (51)

and |r'fa| € 1 and r < ¢%. The local wavefunctions
are assumed to be a solution of

gl2 + kZ(C2 + az)g,. = 0. (5.2)

Two linearly independent solutions are the Airy
integral functions

g=Ai(f) and g =Bi(), (5.3

in which { = —(k/a)¥(az + C?) and the principal
root is implied. Ai is the appropriate solution for a
wave incident from below, and Bi is the appropriate
solution for a wave incident from above. Obviously,
for r 3 0, there will be coupling between these two
solutions. To determine these coupling terms, substitute
g, and g, into (3.9a):

W(g:1, g2) = WI(AI, Bi)(d{[dz),
= —(kja)dajm. (5.4)

L(gy2) = kPrgy.s,
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Hence
, L wr
(Dl.2 - (g_1—2 F — glgz(kza)g)q’w
81,2 a

=F ’—;—’ g1g8:(Ka)iD, ;. (5.5)

The solution of the above equation, on neglecting
cross coupling, is

Oy, = gypexp {;(w/a)(kza)i f g1gar dz}. (5.6)

The solution is satisfactory, provided that L(®, ,) K
k%*q°®, ,. Hence, neglecting the term proportional to

(rfa)?,
pYE-1 R4 glgz(kza)g + kr + w(-s glgz)(kza)%

1,20
KL 1k*q%. (5.7)

The above solution is therefore only a partial improve-
ment over the WKB solution in that it is a good
solution if (dg/dz) is large, but it still fails if the
curvature of ¢? is finite and g is very small. In order to
remove this severe restriction, determine first the
“phase memory”’ concept in terms of the Airy integral
function.

Let f; and f, be the two linearly independent
solutions that satisfy

(0%1,0/02) + K*[C* + az — z)1f2 =0, (5.8)
in which o and z, are functions of z:
o =d(g®)|dz =29¢', zo=1z— [(¢* — C?)/a].
Obviously « and z, are defined such that
C? 4+ a(z — zp) = g%

and if «“ and z§ are the respective values of « and
z, at z =z, then C? + aC(z — z{) is the straight
line tangent to the function ¢2 at the point z = z¢.
Furthermore, in (5.8) the symbol for the partial
derivative is used to imply that here « and z, are
considered independent variables (see Fig. 2). Hence

/1 and f; are the wave solutions for a medium in which
q* is a linear function of z. The solutions of (5.8) are

(5.9

4

a"(23-2) FiG. 2. A geometrical
interpretation of the pa-
rameters & and z, defined
! in (5.9).

1

cB-q?
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the Airy integral functions Ai ({) and Bi ({), in which
{ = —(kjo}[a(z — zp) + C?) = —(k|w)¥q* (5.10)

and (kjo)¥ = |(k/a)|? exp }i(arg (k/x)?), implying the
principal root. Now the local propagation coefficients
in this case are (9/0z) In Ai and (@/9z) In Bi. Hence
the corresponding solutions that constitute the phase
memory concept are

g, = exp {fzg- (In Ai) dz;
0z
and (5.11)
gs = €xp :fz—z (In Bi) dz:,
0z

in which the lower limits of the integrals are arbitrary
constants and therefore not specified. Substitute the
above functions into (3.9a) to derive the coupling
coefficients. Now

1dg _ 19Ai
g dz Ai 0z
[ (2] o - 4412 &
Ld%_ (1 2AN, d'c(az {9z ] dz
g dz* (Ai az) (Ai)? .
and
‘1
d, 1 2 £§=_a(k>[1__2_qza,]
di —oa(kle) 0z dz o 3a?
Therefore
1dg _ 1__3_1‘£2+[82Ai/dz2_ (_1_3__,“)2]
g dz* (Ai 32) Ai Ai 0z
2¢*
x [1—37201] (5.12)
and
1 2 1 9 AiV] 4°
— L =_k22+ __:l_,,
o & 3[ K (Ai 82) o
8182 N4 1 818 k§
Wz ) = 222 W(AiBi) = = — = &=% -1,
(g1 g2) Ai Bi g( )az ‘rrAiBia(a)

in which the subscripts of W refer to the implied
variable of differentiation and W (Ai, Bi) = 1/m.
Therefore
2
9 .
~a
E

3 2
Cyy = —27 Ai Bi (i) [k%f + (i %)

Al 0z
(5.13)

Now

9 Ai (k)* d Ai Ko

— = —afl-} — = —a[—} Ai

z o) di (OL)
and
o =2qq" + 2(q')".

Hence

o I\ q°

Cu = —§n Ai Bi (—) [k%f +o(%) (Ai'/Ai)ﬂ Lo,
k « o

(5.14)
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Similarly, interchanging Ai with Bi, it is possible to
determine C,, directly:

§ K\ (BiV] ¢

C,, = —%m AiB k2q® 2L,
T T 1(k)[“' ()(Bi)]«a“
(5.15)

From the above expressions it is obvious that, for
g—0 and ¢’ — oo, the coupling coefficients are
actually zero. Hence, for the region in which the
upward and downward going WKB solutions are
highly coupled, the above generalized solutions are
actually very slightly coupled. Therefore the gener-
alized solutions are particularly adapted for highly
reflecting regions in which the regular WKB solutions
fail. The following equation, in which cross coupling
is neglected, may now be solved for ®:

, 1 9 Ai
@] — (Zl —a—i + cn)cp =0,  (516)
Therefore
O, —exp{f 1 aAld +fC11dz}
Ai 0z
= g exp f Cndz, (5.17a)

in which g, may also be expressed as

_ d ol dz
g1 = exp f i (In Ai) (6‘ i

from which it is obvious that if (d{/dz) = (98{/0z) («
and z, are constants), g; = Ai. It should be pointed
out that this form of the solution is not appropriate
for regions in which ¢" — 0, for in this case the argu-
ment of the Airy integral functions approaches infinity.
In this region ¢ is very slowly varying, and the gen-
eralized WKB solution merges with the ordinary WKB
solution. From the above remarks it is then clear that
the two solutions (4.8) and (5.17) are complimentary
solutions. The first is good for a slowly varying medi-
um and fails in the reflection regions. The second is
particularly good in the reflection regions, but is less
appropriate in a very slowly varying medium. These
comments are borne out by the “illustrative” example
of Sec. 6.

Before considering certain generalizations to the
above problem, it is interesting to demonstrate how
the coupling coefficients (5.14) and (5.15) may be
derived directly by considering the corresponding
transmission and reflection coefficients at an interface
between two media (at z = z,) in each of which the
dielectric coefficient varies linearly with height (see
Fig. 3). Assume an Airy integral wavefunction incident

) dt, (5.17b)
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24

MEDIUM A
&28-7y
//
z, s Cz_qz
= 2 2
ZB /(, Cz-qz C™-q
O.F MEDIUM 8

A
nA(ZS—Z)BZ}

Fro. 3. Substitution of the ¢2 profile with straight lines tangent to
it at every point.

from medium A. Then, for medium A,

* = a*[AL(IH/ALED] + bABI(C/Bi ()]

(5.18a)
and, for medium B,
B = aP[AI (P)/AL (L)), (5.18b)
in which
A = —(kfa* otz — 28) + C*l = —(kja)ig?
(5.18¢)

with similar expressions for {®, and at the interface
2=z, =0, =0 ¢*=¢"=4q@z)=q,.
The continuity of the electric and magnetic field at the
interface (z = z,) is given by the following equations:

a’ + A = aB,

a® 2AI(YH bt 9Bi({Y)
Ai(fd 0z Bi({* oz
_a® 2AI(D _
A1 ({B) 5 (z=12z2), (519

from which one can determine the transmission
coefficient T

_ @ (98) WA, B)
T= at (82) Ai (M Bi (2Y)

dlrrs e

oBi({*)\7?
Bi({*) oz ):l '
(z=12z). (5.20)

To determine the differential transmission coefficient,

let « — o* + Aux, z",‘ —>zg + Azf} . Then
o _dTd®  dTdz|,
U de® dz 0 dzB d:z B s
0 =%n
B
_9Td| (521a)
agr dz r+lr ¢

Now, since {? is a function of «® and z¥, but not a
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function of z,

@_

2 (-%)§q2(a’3)’lz, :

dz dz 2z iE 3%\«
(5.21b)
Hence
- _MOBO_[1 4w
U= (Ljaz)WiAi, Bi)LAi dl 0z
- _1__a_A..l.d_él:l ég’f’ z=1z, (522a)
(A} 9z dL |dz

in which the superscripts have been dropped, since
{A — {B. Finally, since z, is an arbitrary reference
level, the subscript r can be dropped:

Cu= —4m AiQ)BI (D) (%)g

K71 dAIT ¢
X k2 2 + b¥ BAd 2 ____)] 2=,
[ v (a) (Ai i)l e
which is precisely what is derived in (5.14). The deri-
vation of C,, follows as in Sec. 4.

6. ILLUSTRATION OF THE GENERALIZED
WKB METHOD

As an example of a dielectric coefficient profile
with a finite gradient and curvature, consider a lossless
nonmagnetized plasma with an exponentially varying
electron density. Then

qz = n2 _ S2 = C2 — X = Cz _ Kemz_z"),
= C(1 — &), 6.1

in which K, «, and z, are constants and, for conven-
ience, the origin of the height z is chosen where
g% = 0 (see Fig. 4). The differential equation that
E, satisfies is, therefore,

(&E,Jd2®) + k*C(1 — ¢)E, = 0. (6.2)

There exists an exact solution for this equation in
terms of the Hankel function. For a wave incident
from below, the solution is!

E, = HV(wm), (6.3)

in which v = 2ikC/B, u = e¥#*, and § is assumed
positive. We now seek the behavior of this solution in
the region |fz] < 1. Using the uniform asymptotic
expansion for |v| > 1 and u in the region around unity,
one gets®

H®®u) ~ D Ai [exp Qmif3nie),  (6.4)

§ M. Abramowitz and I. A. Stegum, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables (Depart-
ment of Commerce, National Bureau of Standards, Washington,
D.C,, June 1964), Applied Mathematics Series 55.

(5.22b)
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Z

LANGER'S SOLUTION

c2(+82) NOT VALID IN THIS REGION

cexp B2

BN L
REGULAR WKB
SOLUTIONS

0

2
FAIL IN ce-¢
THIS REGION

~(ar2c33L

REGULAR WKB SOLUTIONS
VALID IN SLOWLY VARYING REGION

FiG. 4. Illustrative example of the use of the generalized WKB
method with g% = C?[1 — exp (82)].

where

D= 2t exp (—mif3) ’
4
—
%5% =In _l__i_(_l.__ui)_. —_ (1 . 32)5‘
u
Now the expansion for & in the region |fz] <1,
u~1+ §p2) is
£~ (H¥-p2),

and
exp (27i[393E = 3QikCIBRR)H(—B2) = (k2C2P)iz.

Hence

HP(veb#?) ~ Ai [(K*C?B)1z]. (6.5)
Now in the region considered here, ¢* ~ —C?fz and
(¢®) = « = — (2. The “local” wave solution of the
Airy integral function type is, by definition [(5.8) to
(5.10)], as follows:

&
Al [— (,3_25) (—Czﬂz)] = Ai [(KC*B)¥z] = g,. (6.6)
Now, since for small z, (0g,/02) ~ (dg,/dz), the
solution for (6.2), neglecting coupling, is E, ~ g, =
Ai [(k2C2B)}z], which is precisely the uniform asymp-
totic expansion of the exact solution. Hence the above
Airy integral function adequately describes the “*local”
wave solution in a region of reflection (g2 = 0) in
which the curvature is finite. This is, of course, not
surprising, since the coupling coefficients actually
vanish at the level for which ¢ =0 [(5.14) and
(5.15)]. The above solution corresponds to a wave
incident from below. Now for z > 0, the Airy integral
function behaves as an evanescent wave, as should be
the case, since z > 0 corresponds to the region above
the reflection layer.

Consider now the generalized solution for the
region fz >> 1. Here

@~ —C%* o= (g") = —C¥ef.  (6.7)
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The “local” wave solution in this case is given by
Ai ({), in which

{ = —(kjo)¥[a(z — zp) — C* = —(k0)qg®
~ (kjo)iC2e. (6.8)

Neglecting coupling, it can be shown (Appendix A)
that the generalized solution for E, is (A5)

E, ~ exp (—1Bz) exp [—(2kC[B)e’**].  (6.9)

Now the asymptotic expansion of the exact wave
solution H,(¢v) for v >> 1 and v > |v] is

HW(v) ~ (2/m0)t exp {iv — dvm — 17}, (6.10)

in which v = ve¥#? = (i2kC/B)e*#*. Hence the solution
given in (6.9) is equal to the asymptotic expansion of
the exact solution for large z.

Finally, consider the case in which § < kC and
1> —pz > (B/kC)}. 1t is seen that this corresponds
to a region just below the reflection layer. In this
region the solution for the electric field may be
expressed in terms of the asymptotic expansion of the
Airy integral function of negative arguments:

E, ~ [Hexp (—3Lh) + iexp 3], (6.11)
in which [(5.10) and (6.6)]
[~ —(k[C?B)ig® ~ (k2C2B)}z.  (6.12)
Now in this region
o (* Y
lkJ;qdz 14 (6.13)

and {1 is proportional to g—¥; hence the solution may
be written as

E,~ kq‘%[exp (—ikj q dz) + iexp (ikf q dz)}.
0 0

(6.14)
Also, for the region under consideration,
2 2
Ljhanp _LLda 5
k| 3\q% dz 24¢° dz 16

Hence, in view of condition (4.10), it is not surprising
that in this region the generalized solution reduces to
the regular WKB solution discussed in Sec. 3. The
reflection coefficient at a reference level z = —h
anywhere below the reflection layer [8h > (8/kC)}]
can be computed readily from (6.14):

0
R =iexp (—2ikf q a’z).
—h

It is interesting to note that, for the case in which
¢* contains higher-order terms in z, for example,

(6.17)

(6.16)

GF=az+ a2+ -.

Langer has used the following argument # for the
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Airy integral function!~3-¢7;
3./k o0 %
1=5(5) | adt;). (6.18)
2 \ay) Jo
in which®
{= _(k/al)galz (6.19)

such that if the higher-order terms in z are neglected,
n={.

This new variable # is introduced in order to over-
come the difficulty that the asymptotic expansion of
Ai (¢;) does not reduce to the WKB phase integral
solutions (4.8) and (6.14) for the cases in which the
curvature is not negligible. The asymptotic expansion
of Ai(#n) obviously does contain the appropriate
phase integral term; however, it is not identically the
WKB solution, since its coefficient is not g% (except
when the curvature is neglected).

Also, it can be shown that # = { + 0({2). Hence the
solution Ai (n) must be restricted to the region
|7 — {| < |{|. Indeed, it can be readily shown that
Langer’s solution is not valid for the case of the
exponential profile (6.1) in the region fz > 1. The
asymptotic solution for Ai (#) in this case is [Appendix
(B2)],

Ai(n) ~ exp (—pz[12) exp [—(2kC/[B)e’**], Bz > 1.
(6.20)

In order to fully comprehend the failure of the solution
Ai (n) (which strongly resembles the WKB solution),
it is necessary to evaluate the coupling coefficient C;;
for the case in which the auxiliary functions g, , are
chosen to be Ai (%) and Bi (%), respectively. It can be
shown that (B6)

2
Co=ZAr()Bi) L L,
2 dz 7q

T NI
=—A B —_—— L, 6.21
" A (1) mm[ : n} 6.21)

and it is obvious that if curvature is neglected, Cy; = 0.
Note that for the case of the exponential profile,
Ci, = —(B/5) at z = 0 (B8), whereas it vanishes if the
generalized WKB solution is used. Furthermore, if the
gradient of the profile (¢%)’ is large, Cy; is also large.
(Recall Cy; vanishes in this case if the generalized
WKB solution is used.) In particular, for the expo-
nential profile, Cy; = —p/6 for fz >> 1 (B9). Hence,
in this case, the coupling coefficient may not be
neglected if Langer’s solution is used (except in the
region |fz| < 1). Indeed, if the more accurate solution

¢ R. E. Langer, Phys. Rev. 51, 669 (1937).

7 C. L. Pekeris, J. Acoust. Soc. Am. 18, 295 (1946).

8 There is an obvious error in Ref. 1, in which k appears instead of
the dimensionless quantity (k/a,)3.
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of the coupled equations is used (5.17a), the solution
is

E, = g exp f Cu dz = Ai(n) exp (_ /_363)

~ exp (— %—Z-) exp [— %g e""/z].

The correction factor to Langer’s solution (exp —fz/6)
is, therefore, sufficient to render the correct asymptotic
solution (6.10) to this problem. The above example
not only emphasizes that Langer’s solution must be
limited to the transition region |y — {;| < [{,|, butalso
points out that even in the transition region Langer’s
solution is restricted by the requirement that g% have a
small curvature.? Indeed, it is shown (for the particuiar
example discussed in this section) that the coupling
coefficient is larger in the transition region (fz & 1)
than outside the transition region where it is shown to
fail.

(6.22)

7. DECOUPLED GENERALIZED
WKB SOLUTIONS

A straightforward generalization of the decoupled
solution (5.17) can now be derived through an iterative
process. Let g, be the zero-order solutions for @, ,
[such as (5.11)]; then CP, is the coupling coefficient
corresponding to the zero-order solution. Thus (3.92)

= .
p W(gl, g2)
Then let g, be the first-order solution given by
(5.17a). Thus

¥4
gls = glaexp f Cl, dz, 7.2)

and the coupling coefficient corresponding to the

first-order solution is

oL =Y L(g)gr
p (g8

In general then, a higher-order solution is given by

(1.3)

Z
3" = shaew [ Chd,
where C7, is the coupling coefficient for the nth-order
solution
. _ w_L(g1gs
Cll - n n
p W(g1,8%)

Hence the general solution may be written in terms
of the infinite product

@, = g [T exp (f Ch dZ),
n=0
=g2exp[z fczadz}

n=0

(7.4)

= lim g7
n— o ’

(7.5)

E. BAHAR

with a similar expression for ®,. Obviously the
feasibility of the above solution depends upon the
convergence of the series in the argument of the ex-
ponential function. It has been pointed out that this
depends strongly upon the choice of the zero-order
solution g7 , . Particular attention has been paid to the
suitable choice for g7 , for the case of the second-order
differential equation (2.5). The more general second-
order differential equation (2.1) can often be reduced
to the form of (2.5), as for the cases in which p and
w are polynomials of the independent variable u (e.g.,
Bessel’s functions). If this is not feasible, a direct
approach to the solution of the coupled equations
(3.7) should be made in the same manner as in Secs.
4 and 5.

As specific applications to (7.5), note that in Sec.
4 it was shown that if g7 , are chosen to be the homoge-
neous plane wave solutions exp {Fikq,z} (4.2), the
first-order solutions g}, constitute the well-known
phase memory concept (4.5), and the second-order
solutions are the regular WKB solutions (4.8). In the
previous section it is shown that if g? is assumed to be
Langer’s solution, g} corresponds to the correct
asymptotic expansion (6.9) derived from the exact
solution (6.3) [or directly from the generalized WKB
solution (5.11)].

A brief comparison between the two iterative proc-
esses described in Sec. 3 is now made. In the series
expansion, the coupling coefficients (corresponding to
differential transmission and reflection coefficients)
are the same for each successive iteration. Hence the
individual terms lead to simple geometric-optical
approximations.? In the infinite product expansion,
the coupling coefficients C (only diagonal terms
needed) in each successive iteration decrease. Thus
each set of successive iterations g7, is less coupled and
better approximates the full wave solutions.

8. RELATIONSHIP BETWEEN THE
REGULAR AND GENERALIZED WKB
SOLUTIONS AND SOLUTIONS OF THE
RICCATI EQUATION

Now the regular WKB solution is related to the
solution of the well-known Riccati nonlinear first-
order differential equation of the form*—*°

¢ + ¢* + k%2 = 0. (8.1)

Hence it is rather interesting to compare the corre-

sponding relationships between the regular and

generalized WKB solutions and the solution of the
Riccati equation.

The regular WKB solution is based on the following

® H. Bremmer, Terrestrial Radio Waves (Elsevier Publishing Co.,
Amsterdam, 1949).
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approximate solution for ¢:
¢ ~ tikq — ¥(q'|q) = tikq — }(d|dz) Ing®. (8.2)
Obviously this solution is based on the assumption
that ¢’ is much smaller than k2¢?%, which is appropriate
for a slowly varying g profile with no critical coupling
points. In this case the dependent variable ® is
derived through the relationship

O = expf pdz = (q)_% exp iikf qgdz. (8.3)

However, using the generalized WKB method for
a g profile that may contain critical coupling points,
the corresponding solution for the Riccati equation,
which is apparently new, is

¢ ~ (3/a2)(In Ai (), (8.4)
in which £, given by (5.10), is a function of z and the
“local” parameters (« and z;) of the ¢ profile (5.9).
Now using the above solution (8.4) and (5.12), it can
be shown that

2 o o dl |OL
[ 2 k.2_ =
® (¢" + q)dz/az

= —(¢" + K'¢)(1 — (2¢°3«")’). (8.5

Hence, obviously, the solution derived here for the
Riccati equation is restricted only by the condition
g*/30%e’ K 1. (8.6)

This condition is satisfied not only in the transition
regions in which ¢ is small or « very large, but also
for regions in which the curvature of the ¢ profile is

small.
9. CONCLUDING REMARKS

The example in Sec. 6 vividly illustrates the strength
of the generalized WKB solutions developed in Sec.
4. In these solutions, the “‘local” wave solutions are
chosen to be the Airy integral functions rather than
the plane-wave phase memory expression used in the
regular WKB solutions. It is shown in the example
that the generalized WK B method yields the necessary
solution at, above, and below, the reflection level. This
was done without introducing any “corrections” in
the general formulation of the solution at any of the
levels, particularly when the curvature is not negligible.
A concise treatment of the WKB method and Langer’s
method (applicable for small values of ¢?) is given by
Jones.*

For the sake of the illustration, the generalized
WK B solutions were compared with the corresponding
known asymptotic expansions. This process may be
reversed to yield asymptotic expansions of ‘functions
in regions that are poorly tabulated.

It should be remembered that while in Sec. 4 the
“local” wave solution was chosen to be the Airy
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integral function, in certain cases it may be preferable
to choose a different “local” solution on which to
build the desired solution. The criterion in each case is
the minimization of coupling coefficients over the
entire range of the independent variable.

The problem discussed in this paper is the general
second-order differential equation which is decom-
posed into two first-order differential equations. It
can readily be seen how this method may be genera-
lized to solve certain higher-order differential equa-
tions, which may be decomposed into several coupled
first-order differential equations. As an example of
this kind, one may recall' that in a magnetoionic
medium the electromagnetic fields satisfy fourth-order
differential equations (or four coupled first-order
differential equations). When the parameters of the
media are constant, these equations may be decoupled
into the well-known forward and backward ordinary
and extraordinary waves. But when the parameters of
the media vary, these are coupled, and straightforward
generalization of the method described in this paper
may be used to solve the coupled equations.

In the event that it is not possible to choose a
“local” solution such that the total coupling (in the
entire range of the independent variable z) is not too
large and an iterative solution of the coupled equations
is not feasible, it is necessary to derive separate
solutions in different ranges of the variable z. In this
case it is necessary to match the field quantities at the
boundaries between the separate regions. This, of
course, is related to the solution based on the substi-
tution of a given nonuniform dielectric coefficient
profile with a discretely stratified model.31® The
difference, of course, between the two methods is that,
in the solution developed in this paper, the dielectric
coefficient in each layer is considered to vary in
precisely the given manner, rather than assumed
constant or even assumed to vary linearly. As a
consequence, the generalized WKB method would
require a significantly smaller number of ““layers” and
would possibly yield more accurate results. Alterna-
tively, should a numerical method be resorted to in
solving a set of coupled first-order differential equa-
tions [such as (2.2) and (3.1)], it would be preferable
to solve them in terms of the loosely coupled dependent
variables ®, and ®, [defined in (3.2) and (3.6)],
rather than in terms of the original dependent variables
® and ¥'. This would reduce the truncation error and
permit the choice of a larger “step size” in the
numerical analysis. A concise review of a number of
numerical methods is given by Budden.!

10 Extensive references to this work are given in Ref. 3.
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In a recent paper on numerical solution of full wave
equations, Inoue and Horowitz!! strongly emphasize
that the step size is critically determined by the
assumed expression for the solution and for ¢ in each
“slab.” Their numerical method is based on the ex-
traction of the phase memoryintegral from the solution
and the assumption that within a subslab the propa-
gation coefficient matrix varies linearly.

Finally, it is of interest to point out that a concept
similar to the one used in this paper has been used to
derive the solutions of the “coupled” mode equations
in nonuniform waveguides.!?'13 It has been shown that
for the case in which the nonuniform waveguide is
considered to consist of infinitesimal radial (or conical)
waveguides, rather than infinitesimal rectangular
(or cylindrical) waveguides, the coupling coefficients
are substantially smaller.
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APPENDIX A

Generalized WKB Solution for (6.2),
in which 8z > 1

The asymptotic expansion for Ai ({) for —§» <
arg { < &wis

Al () ~ 31 Hexp (—30Y), (AD)
in which { is given by (6.8). Therefore
MmAi())=Indr*—}In{ — 32 (A2)
Now
9¢/0z = (kx)ta.
Hence
_a_ 1) ~ 3 * ﬂ z/2
oz (A0~ (g + 8) () = = (5 4e)
(A3)
and

Ing = f éa; (In Ai) dz = — (%? + ”‘—ﬁc— eﬂ=/2). (A4)

Now, neglecting the coupling terms,
E, ~ g, = exp (—}az) exp [—(2kC[B)e?*/*).

APPENDIX B
We give asymptotic expansion of Langer’s solution
Ai () and the derivation of the coupling coefficient
Cy, for the case g, , = Ai (#) and Bi (%), respectively.
For the exponential profile the variable # defined in

(AS5)

11Y. Inoue and S. Horowitz, Radio Sci. J. Res. (New Ser.) 1,
957 (1966).

12 E. Bahar, Radio Sci. J. Res. (New Ser.) 1, 925 (1966).

13 E. Bahar, Proc. IEE 13, 1741 (1966).

E. BAHAR

(6.18) is

= [(Ep e e
- [_g;kf q dz:] - [%kCJ:[e‘” - 1]*dz]§,

3
{3’;(3 [; e# — )} — tan™! [e#* — 1]*},
~ % B2/3. > 1. B1
() e ®D
Hence
Ai () ~77* exp (—3¢h)
~ exp —(Bz[12) x exp [—(2kC[B)ef?], (B2)

and Ai(#) is not in agreement with the correct solution
(6.9). With

g=Ai(y) (B3)
d? dg, (dn¥ = dg, d*
BB+ @
dz dn” \dz dn dz
where
dy _dndly_ kg o dq_dntd o
dz di, dz nt dz? dz2dz 7 ’
dn d
Wg1, 8 = — W(glag2)__—n;
dz mdz (BS)
dnld q
L = Al —In
(g1) dz 2 dz 7]
T, . q°
Cyy = Ai'(m) Bi(p) — 1“ - (B6)
2 dz g
Now for small z
q2~alz(1 + @z),
a1
g~ (alzﬁ(l + z), (B7)
2a,
2
(@?) ~ al(l + 2 )
a,
in which
(q2)2—0 (q2)z 02 .
nt~— lkalf ( )dZ,
3 3 3 2,
~ —ikajz*(1 + = . (B8)
10 a1
Hence
2 2y, . 2\
i]nq—=§_q_)_+l_%~i‘ﬁ=i[(q)} =%I3
dz 7 ¢ n* Sa  50(qg% o
(B9)
and
Chn =137 A (0)Bi(0)#8 = —pB/5, z=0.
For large z, g ~ — C2%#%,
Cu~—1B—B/3=—38, Bz>1. (BIO)
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It is pointed out that, by using the identity (v, (HW — WH'W) = (E — E’)(y, W¥’), it is possible
to derive useful relations among physically interesting matrix elements.

N view of the continuing interest in the calculation
of Coulomb matrix elements,! we wish to point out
that it is possible, in a very simple way,? to derive
useful recursion relations for such matrix elements.
The relations are based on the identity®

(E — E"(p, Wy') = (v, (HW — WH')p), (1)

where
Hy = Ey, HY =EY, 2
and where at least one of the wavefunctions  and ¢’
describes a bound state.
For the specific application to Coulomb matrix
elements we choose p and 3’ to be radial Coulomb
wavefunctions, and H and H' to be the corresponding

radial Hamiltonians*

2 2

4 k z
_ —_-—_, 3
2+2R2 R (3

2 2 ’

,_ P,k z
H==4———, 4
2 2R* R @

with p the radial momentum operator, k* = I(/ + 1),
and K2 =1'(' + 1).

As an example of the sort of results obtainable in
this way we quote the following recursion relations,
which are derived by straightforward application of
Eq. (1)-(4) to W = R* and W = pR":

(s/{pR1} = (E — EQR} + (z — 2R}
— 3sts — 1) + K* — K"KR, (9)

(25 + 3)
(s+1)(s+2)
x (E — E')(z — Z){R**"}

0 E—E

RS+2
12 {R%} +

* This research received financial support from the NASA,
Grant NsG-275-62.

+ Physics Department,
Wisconsin.

1 See H. B. Bebb, J. Math. Phys. 7, 955 (1966), and references
therein.

2 For an application of this method to the calculation of diagonal
matrix elements, see J. H. Epstein and S. T. Epstein, Am. J. Phys.
30, 266 (1962).

3 For some cautionary remarks concerning the use of such identi-
ties, see S. L. Gordon, J. Chem. Phys. 42, 4184 (1965), Appendix IC.

tWelete=m=h=1.

University of Wisconsin, Madison,

+ [(z;zl+(s+ 1)(E + E')

s+ 1
_(S-f-—l) I nl4 2 _ 2 8
e k’yR}

" [(z + 2) (25 + 1) — (2s + 1)z — 2)(k* — k'z)}
2 2s(s + 1)
x {R*}

+ [_Sk2+ (S(S— 1) -+ k2 — k'2(5(5+ 1) + k2_ k,g)]
S

Rs—2
where? x (R, (©)

{4} = (v, Ay").

The derivation of (5) is straightforward. One simply
writes HW — WH' as HW — WH + W(H — H')
and then uses the familiar commutation relation
Rp — pR =i and the standard rules of commutator
algebra® to evaluate HR® — R°H. The derivation of
(6) requires one further observation: namely, whenever
powers of p higher than the first appear, as they do in
evaluating HpR® — pR°H, then they can be eliminated
in favor of first- and zero-order terms. Namely, by
using the commutation relations, one can shift all
factors of p? to the extreme left where, from (1), they
act directly on v, and hence, from (2) and (3), can be
replaced by

2F — k*/R? 4 2z/R.
Once this is done one uses (5) to eliminate the various
{PR"} which appear, and the result is (6). Similar
results can be derived for other choices of W and for
other central potentials.?
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5 Specializing to the case z = z’, E = E’, one can, by use of (5)
and (6), give a very simple derivation of the Pasternack-Sternheimer
theorem [J. Math. Phys. 3, 1280 (1962)].

6 See, for example, E. Merzbacher, Quantum Mechanics (John
Wiley & Sons, Inc., New York, 1961), p. 161.

7 Results for W == ReeBE, W = pReBE (see Ref. 1), W = RéebR?,
and W = pR*eBE® for hydrogen, and for the isotropic harmonic
oscillator, are given in the technical report WIS-TCI-191, available
on request from the Reprint Librarian of the Theoretical Chemistry
Institute, University of Wisconsin, Madison, Wisconsin,
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A class of Lorentz invariant generalized functions can be defined as analytic functionals, ie., as
continuous linear functionals which are contour integrals over a suitable space of test functions. These
generalized functions include in particular the invariant functions of quantum field theory, but also
include “propagators with higher order poles.” The analysis shows exactly which of these are well defined,
especially in the important special case of zero mass. Various applications to quantum field theory

are indicated.

1. INTRODUCTION

HE importance of the Lorentz invariant ““func-

tions” Ar(x) and Dr(x) in quantum field theory is
well appreciated. More recently, in connection with
the gauge problem in quantum electrodynamics, simi-
lar functions arose which have poles of higher order.
These have sometimes led to undefined or ambiguous
expressions. Similar quantities arose in the extension
of quantum field theory to nonrenormalizable inter-
actions.

While it is recognized that these objects must be
defined as distributions in the sense of Schwartz! or,
more generally, as generalized functions in the sense
of Gel’fand and Shilov,2the discussion of distribution
theory in the physics literature®* does not present the
Ap(x) and Dr(x) and their higher-order pole general-
izations in a form suitable for applications in quantum
field theory. The basic mathematical questions have
all been presented’~* and special attention has also
been paid to Lorentz invariant distributions.> Our
task here is therefore mainly one of application of the
theory of generalized functions to the particular func-
tions of our concern and to make the associated
mathematical formalism useful for quantum theory.

We found the representation in terms of analytic
functionals especially convenient and close to what
physicists have been doing on a formal level. After
an explanation of these objects in Sec. 2, we present
the generalized functions A% as analytic functionals
in Sec. 3. This is followed by an explicit x-space

* This work was supported in part by the U.S. National Science
Foundation and the Swiss National Fund.

t Permanent address: Department of Physics, University of
Berne, Berne, Switzerland.

t 1. Schwartz, Théorie des distributions (Hermann & Cie., Paris,
1957).

2 1. M. Gel'fand and G. E. Shilov, Generalized Functions (Aca-
demic Press Inc., New York, 1964), Vol. I; and Verallgemeinerte
Funktionen (VEB Deutscher Verlag der Wissenschaften, Berlin,
1962), Vol. 11.

3 L. Garding and J. L. Lions, Nuovo Cimento (Suppl.) 14, 9
(1959).

4 H. J. Bremmermann and L. Durand, III, J. Math. Phys. 2, 240
(1961), and earlier literature quoted there.

5 P.-D. Methée, Comm. Math. Helv. 28,225 (1954); 32, 152 (1957).

representation and other properties of A%(x) in Sec.
4. The special case m = 0, which yields the generalized
functions D% , is discussed in Sec. 5. The last section
is devoted to applications of some of these results to
quantum electrodynamics and to asymptotic quantum
field theory. Some of the details of the proofs are
relegated to two appendixes.

2. ANALYTIC FUNCTIONALS

We consider the set D or X (in the notation of
Ref. 2) of all arbitrarily often differentiable functions
of one variable which vanish outside a bounded do-
main. The set consists of the union (over a) of all
complete countably normed spaces K.(a) of arbitrarily
often differentiable functions which vanish outside
the bounded domain 2a[g(t) = O for [t| > a]. The
reader is referred to Ref. 2 for the topology of these
spaces since we do not make use of it here.

The Fourier transform f,(x) of a function in K(a)
can be extended to the complex variable z = x + iy.
f.(2) is an entire function of slow increase in the sense
that

2" 1fu(D| L Cpe™ (n=0,1,2,--1). (2.1)

The set of all f,(2) is the space 3(a) = FX(a), where
F is the Fourier transform operation. The union over
a of these spaces gives 3 = FX.

An analytic functional T+ on 3 is a continuous
linear functional of the fe3 characterized by a
contour integral

<nJ3=ﬁn0ﬂaa. 2.2)

For example, the Dirac ¢ function can be defined as
an analytic functional with support at the point z by

(Mans§M—mmﬂEi 1@ dt

2mi) (—z
(2.3)
so that
L — z) = (12m)[1/({ — 2)], 24
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and the contour is the usual closed path in the positive
sense containing the point z. Equation (2.3) implies

(4p(2), 1) = f(2). 2.5)
The nth derivative of d,(2) is also defined:
(33'(2), 1) = (D"95(2), 1),
=¢ (EE A~ 9) SO L,
n e ! f(C) dC npln)
= =(—1 X
(= ) L= 2y (=D ")
(2.6)
The property
(D T¢, ) = (—D)(Ty, D) ()]

of the derivative operator D is, of course, a general
property of generalized functions.

A class of analytic functionals of special interest in
quantum field theory is closely related to dp(2). We
discuss some of these, viz., dp, 05, and d,, first and
then generalize to the related Lorentz invariant dis-
tributions in the following Sec. 3.

We define for real argument x=Rez

@) = jf © ~ (") & 28

the contour followmg the real axis. This integral is
just the Cauchy principal value, usually denoted by
P preceding the integral. For the purpose of future
generalization we define

R [T L@ _ [ 1) =1

dg,
—00 E - X -0 5 - X E
— lim UH+Ioo )f——-(g) &
e>+0\ J—w0 ate) & — x
=P AGK . 29
—o E - X

We can write symbolically, following the definition
(2-3),
0p(& — x) = (12m)R[1/(§ — x)].  (2.10)

By induction one verifies easily that (with symmetric
integration about the pole)

dr e f8) d§
dx™ — E - X
& — go—(s X (x)
= n! f_ 3 G dé. (2.11)

If the integral on the right is symbolically written as

f _f&dg
(

ppapeey (2.12)

1749

Eq. (2.11) can be expressed by the formally trivial
relation
Lp L —mr—— .

dx® 5 — % (E — x)n+1
The integral (2.12) is well defined for all n. The
operator R is clearly a generalization of the principal
value integral. The latter is defined only for » = 0,
in which case R and P'are identical, according to (2.9).
The operation Ris sometimes called *“‘regularization.”
It is not an arbitrary cutoff procedure, but appears
here as the natural extension of the Cauchy principal
valueton=1,2,---.

We can now define the generalized function 6 by

(2.13)

© d 'E
b(n) = 1 n 0 f f('s)
CPO.N =D R| S
(n =0,1,--9). (2149
It is easy to show, however, that
P = D"%p (2.15)
because

(D8P, f) = —(8%, D),
L dé
— (_1)n+l L f

27l Jow (& — x)™1?
x[ro-$E2 f‘”“(x)],

_ n+1(" + 1!
= -y i " o O
= (g, 1),

Here we use integration by parts and the definition
(2.12) for the integral on the right of (2.11). This
proves (2.15) by induction.

Closely related are the two analytic functionals

Gnr) = 5 SO 14y
iJer{—x

6o = L0 4,
AZ'—x

where the contour Cx(C A) follows the real axis from
— oo to x — €, describes a semicircle with center at
x from x — € to x + € going into the upper (lower)
half-plane, and continues along the real axis from
x + € to +c0; the limit € — 0 is then taken. In a
well-known way one has

f(Z)dC=Pf f(C)dC;F f(C)dC
Cral — X o L — x —x
Therefore,

Opa=0p T §dp. (2.16)
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The integrals on the right of this decomposition can
both be differentiated with respect to x an arbitrary
number of times. One can, therefore, define a class of
analytic functionals- over 3 by

! SO di
8 (x), f) = _1"—"—f LIS o qy
CRUD.N = (=" | ol @)
and we find
6%‘,’1, = o' F 16\ (2.18)

This equation can also be written in terms of the
integrands as

S S, [ S S ) )
& —x)"? R4 £ — x)r! n!

(2.19)

where 6" is the nth derivative of the d function (2.4).
Analytic functionals have a Taylor expansion,

o hV
Tz + b =3 Do) 7,

where the contour I' depends, of course, on the argu-
ment of T. The analytic functionals 6y(z), 6\¥'(z),
and 6'7(z) are therefore defined for all z by complex
extension, just as D*dp(z) in (2.6). The contours Cp.,
Cgr, and C,, which for z = x were defined along the
real axis, are now parallel displaced with suitable
half-circles around z.

3. “INVARIANT FUNCTIONS”> AND
RELATED DISTRIBUTIONS

The Lorentz-invariant ““functions” used in quantum
field theory are actually Lorentz-invariant generalized
functions that are defined by a contour integral in
the complex plane. They are therefore analytic
functionals in the sense discussed in the previous
section. More specifically, they are solutions of the
homogeneous d’Alembert equation in Minkowski
space,

(0 —m»HAr(x) =0
or of the inhomogeneous equation

(O = mP)Ar(x) = —0y(x)

3.1

(3.2)

(with m % 0 or m = 0), but are specified usually as
Fourier transforms of a function of p? = p? — (p°)?2
The latter is necessarily of the form (p? + m?™ [or
(p»! for m = 0] and the contour is specified in the
complex p° plane. In the notation of (2.2) we have

T(p) = 1/(p* + m*) (p° complex).

In terms of the differential equations (3.1) or (3.2) the
contour is, of course, equivalent to a specification of

3.3
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asymptotic boundary conditions suitable to charac-
terize the solution uniquely.

We here consider a more general class of analytic
functionals which contain the above as a special case.
To this end it is convenient to consider separately the
two cases m # 0 and m = 0. The latter is postponed
to Sec. 5.

The test function space is now the set of functions®
o(p) = f(pYg(p) with fe3 and ge S(R®). In the
notation of (2.4) we define the generalized function

3
@A, p=-"1 f 2P o(p) f 5(° — w)f (") dp,
27 ) 2w C.

3.4
where o = +(p? + m?)? and the contour C L is a
circle containing the point p°® = w and is traversed in
the clockwise direction. This object is an analytic
functional with parameter w, viz., é;,(w), which, when
“integrated” over the test function f, yields a tempered
distribution:

A, ) =(T,g), where T = —(1/4miow)(dp(w),[)
(3.5
The minus sign arises from the fact that d, is defined
with the path —C,.
Substitution of (2.4) into (3.4) yields

s 0 (p) ,
@ 9 _f “r fcf”’ @m? 20 - (0 — ")
- f Pp L dr°R (P p(p).

The notation A,(p) is used here because, if one
formally replaces ¢(p) by
eo(p) = [1/(2m)*le™* (3.7
(which is not in our test function space), one obtains
the well-known representation of the tempered
distribution A_ (x):

1
(A+a (pz) - (27T)2

(3.6)

f &p fc PR ()™ = A, (x).
(3.8)

The Fourier transform is discussed in general at the
beginning of Sec. 4.

In the same manner one finds that the distribution
defined by

A_,p=i f j—ﬂi L_é(p° + w)g(p) dp°,

- f &p fc_dp"ﬁ_(p)sv(p), (39)

% The specification @ € 8(R®) ® 3(Z) is, of course, the essential
point. That @(p) can be factored into g(p)f(p®) is by no means
necessary. It is assumed here only for the sake of clarity of presenta-
tion, but the argument clearly carries through without this
assumption.
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with C_ a circle containing the point p°® = —w and
traversed in the clockwise direction, corresponds to
the invariant distribution A_(x). The distributions
A=A, + A_and iA; = A, — A_ then follow due
to linearity. This exhausts the four “homogeneous”
Ar functions, i.e., the four well-known Lorentz-in-
variant solutions of the homogeneous equation (3.1).

The definition of Ay, analogous to A ,(x)in terms of
an analytic functional, makes use of d, defined in
(2.10):

B, 9) = —i [L2 [8,0° — w)g(p) dp°
47w

| d%p
+i|—
f4'n'a)

The two integrals are not Lorentz-invariant separately,
but they combine to the Lorentz-invariant expression

f 86(p° + w)p(p) dp®. (3.10)

A, @(p) dp° ’
Gr. =13 )Zf f(z (" + m?)
1 -
= A d*p, 3.11
) J pP)e(p) d’p (3.11)
1 1
Ap(p) = Gy p e (3.12)

The meaning of the R operation is that given in the
last section, provided the expression (p® + m?)? is
written in its partial fraction expansion [see (3.14)
below].

Since all five inhomogeneous A [i.e., solutions of
(3.2)] are given in terms of one of them together with
the four homogeneous ones, the linearity of the dis-
tributions gives us Ap, Ay, Ajg, A, trivially, once
Ap is known.”

All Ap can be expressed in terms of p? 4 m?®. Thus,
(3.6) and (3.9) could also be written as

_ 1 fd3pf dp® 2P .

2n)* c: pi4+m
We therefore now ask for the representation of the
more general class of distributions defined by

=G |77}

in terms of the dlstrlbutxons 6‘5’(}7 + m?) and
R[1/(p?* + m?)]. With this definition A} are the well-
known invariant functions Ay

The method of derivation consists in reducing this
problem to the one-dimensional case discussed in

AL, ®)

<p(p)

2)n+1

(A, 9) (3.13)

7 For notation adopted here see J. M. Jauch and F. Rohrlich,
Theory of Photons and Electrons (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1959), 2nd printing.
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Sec. 2. This is done by means of the partial fraction
expansion

1 1

@+ m)" (0 — p)(w + )"
_"_1 n+v—1 1
N go( y )(Zw)"+v
1 1
X + .
[(w )" (0 + P°)"‘"}
s (3.14)
sing
1 1

_— —_ 3.15
@Fo)yrle P F o) 315

in the notation of (2.19), we have for the quantity
Ax(p)
1
27 A%p) = ———1|
( 77) #(p) (p2 n m2)"+1 P

=z(n+v) 1

V=0 » (2w)n+v+1

)il 1
[R (o ; —v+1 + 0 —v+1 |°
(p _w)n v+ (P +w)n v+
1

—_ 3.16

(p2 + m2)n+1 ( )

Here we employed (3.14) twice.
For the homogeneous functions (closed contours

C;) we need (2.6), which, for the present variables and
in obvious symbolic notation, gives

1 _ (= 1) 2mi
(po F w)n+1 O
The contours C and C, are related to C, and C_
by C=C, + C_and C, = C, — C_. Therefore,

8™(p® F w). (3.17)

1 A n4 v\ 2mi 1
(P* + m)H* e +Zo( v )(n — 1! Q)+
X [6(n—v)(p0 _ w) F (_1)n—va(n—v)(p0 + w)]

(3.18)

In order to express this in terms of p* 4+ m? one needs
the auxiliary expansions [e(p®) = %1 for p® 2 0]:

- 1 (n+ ! 1
6(") 2 2y — —
(r* + m%) Zov! (n — »)! Qo)™+
x [6(n—v)(w - pO) + (_1)n~v6(n-v)(p0 + w);

3.19)

it 1

\gb »1(n — 9! Q)"

% [(5("_v)(w _ pO) _ (_])n—vé(n—v)(po + w)]
(3.20)

e(1)0)6(71)(1’2 + m2) =
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TasLE L. The analytic functionals Af (n > 0) expressed in terms
of R(p® + m*)™ and &V'(p* + m®).

Ap Contour @A)
27i
An C. + =5 8(£p) ™ (p* + m?)
i
A C=C,+C_ n_ﬂ'l (PO (p? + m®)
iAD 27 g 2
it Ci=C, —C. 77+ m)
n 1
AP CP R mrl
1 i
A4 Cp+iC R T + ”—1: (P8 (p* 4+ m?)
1 ,
Afp,14 Cp £ 3G, R G + %6(")([’2 + m?)

These are proved in Appendix A. With their aid we
now have

ml n
@+ m o e(p“)é‘ '@+ m®), (3.21)
et i +lmz)n+1 = é‘"’(p + m?). (3.22)

The other two homogeneous cases, corresponding to
contours C, and C_ , then follow as linear combina-
tions of these.

We can thus give AZ(p) for all four homogeneous
and all five inhomogeneous cases, the latter being
linear combinations of A7 and the homogeneous Az
The results are collected in Table I. This table is valid
for n > 0 but can be taken over also for negative
integers n, provided one defines 6" = 0 (n < 0). Then
all homogeneous AZ/" = 0 and all inhomogeneous
ones become simply ( P2+ m)" (n < 0).

4. PROPERTIES AND REPRESENTATIONS
OF An(x)

As already mentioned in Sec. 2, f(p°) € 3, for com-
plex p° implies that its Fourier transform f(x°) € D,
where

f°) =

f F(x%e " 10, 4.1)

(2m}
On the other hand, g(p) e 8(R® implies that its
Fourier transform g(x) also € 8(R®). Thus, with®
@(x) = f(x*)§(x), one can define

ARG = f Arper=d'p,  (42)

@2n)?
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and find
(AF, 90 = f ™™ dx
x f FO0e 'K (p) dx° d*p,
- f 2@ PAL(p) d'p,
= (AxD), ¢(p))- 4.3)

The differential equations satisfied by Ap(x) follow
from the well-known equalities [easily established
with (3.19)]

PP+ m)ym"dN(p2 4+ mH) =0 (m>n) (44)
and
(p* + m® R[1[(p* + m®)"] = 1, 4.5)

which can readily be proved. The results tabulated in
Table I tell us that the “homogeneous” functions
Ar = {A", A", A7} satisfy

(0 — m*)"AL(x) =0, (4.6)
while the “inhomogeneous™ functions
Ay ={A%, Ak 4> Algaad
satisfy
(0 — m)™AYX) = (=D"0,(x). (4.7

A recursion relation for AR of the same I' but
different n is obtained from the observation that (2.13)
permits one to write

d\" 1 1
—1 R =(~1D)"M!'R—— (4.8
(dmz) p*+ m? (=D (P* + m**! “.8)

Table I and (4.2) combine to yield the fundamental
equation

Ap(x) = (—‘an)—"(d—,‘fl;)"Ar(x), 4.9)

and therefore also

AFY(x) = (—1)" —L( d ) "x). (4.10)

(n +)!\d

Since 6(£x"), defined to be I for x° 2 0 and 0 other-
wise, commutes with d/dm?, the usual relations also
hold for the A%:

A% 4(x) = £0(£x")AK(x),
Alg14(x) = AB(x) + $iAY(x),
A™(x) = 2e(x")A%(x).

@.11)

The knowledge of one inhomogeneous function (e.g.,
A7) and two homogeneous functions (e.g., A* and
A}) therefore completely determines all the others.
The last relation, however, shows that A;‘, and Ar
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alone suffice. We can now make use of the known
representation of the Ar(x) in terms of cylinder func-
tions. The AZ(x) then follows easily from (4.9). For
this purpose one needs the following differential
relations for the unmodified cylinder functions
z,={J,,N,, HY, H?} and for the modified cylin-
der function K :

(—"—)"(z'"zm(z» ="z, (2), (412)
zdz

( —d—) G"K,(2) = 2" "K,,_(2), (413)

(_ z dz) ( (Z))

The last relation is also valid for K,,(z); we also note
that Z_, = (—1)"Z,and K_, = K,,.

With the notation x* = x,x*,u = +(Ix2E, 0
for n = 0, zero otherwise, one finds

n(x) = (—_I_)n(_d__)"

m+n(z)
ZmAn :

(4.14)

n0=1

n! 2mdm
_1_ 2\ nf 2 _’fjl(m“)
x [4716(14) B(—x) g- =10 ]
— 67106(“2) 6( X )

( )"- J o (mu). (4.15)

4 167n!

In the same way one finds (n > 0)

_N’n—l(mu) x2 < Oa
A%(x) = 1 L)"_l
! 8mn! ( 2 K, (mu) x> 0.
ko
(4.16)

Since A"(x) = 2e(x®)A%(x), according to (4.11), Egs.
(4.15) and (4.16) give two homogeneous and one
inhomogeneous A%, and therefore all AR by linear
combination. Because of their special importance in
quantum field theory, we give here the particular com-
binations A7, and A7, explicitly:

57’06(“2) + 1 (L)nvl
4 167! \2m
{ H® (mu) }
X
(2i/7T)Kn»l(mu)
8,,00(u?) " 1 (_y_)"‘l
47 167n!

{ H'Y (mu) ]
X —Q2i/m) K, _y(mu)

Ajr(x) =

(4.17)

{x2 <0,
x2> 0,
{x2 <0,
x2> 0.

ATA(X) =

2m

(4.18)
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Equations (4.15)—(4.18) are all valid for all nonneg-
ative integers n.

The special case I' = Cy was first obtained by
Bhabha.® The function A% resulting from the above
agrees with his work apart from notation. The func-
tions A7, and A7, can be compared with the results of
Ref. 2, p. 365. They agree.

5. GENERALIZED FUNCTIONS D

We define
Df = lim A}.

m=0

(5.1)

The study of this limit is easiest in the x representation.
The leading terms of the cylinder functions for |z] K 1,
viz.,

Ju(2) =2 (32)"/n!

N(2) e ——71;(3) (n>0),

K (2) =~ %(%)n (n>0), (52

2
No(2) == ;ln % ;

Ky(2) = —In %Z ;

where In y = C = Euler’s constant, can be combined
with our results (4.15) and (4.16). One obtains

DY(x) = (x,x¥)dm,
[6(—x*)/16m(n — 1)! nt}(Fu®)"?
(n > 0),

p(x) =
(5.3)

D¥(x) = —1/27%x? (5.4

The limit for D?(x) (n > 0) does not exist. As a con-
sequence the D} for n = 0 all exist, but for n > 0
only those exist which can be derived from D%, viz.,
D%, D%, D7, and D" The limits D}y, D},, D}, D",
for n > 0 do not exist.

This result is in agreement with analyticity con-
siderations. The limit m — 0 leads to an integration
over w [see, e.g., (3.4)] with lower limit zero and
corresponds to the coalescence of the two poles
P’ = o, w = [p| in the analytic functional. If the
path of integration is thereby pinched, the expression
will not exist. On the other hand, if it is not pinched,
analyticity requires its existence. The above results
confirm that D} exists for n > 0 if and only if the
contour is not pinched when the poles coalesce. The
case n =0 is an exception that works because of
the measure w? dw which vanishes sufficiently fast at
w = 0 (see below).

Consider this problem now in p space. One can, of
course, take the limit m — 0 in Table 1. But the
resultant analytic functionals in p°® will have a (para-
metric) dependence on  which is, in general, not a

lA’

8 H. Bhabha, Phys. Rev. 77, 665 (1950).
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distribution. This is due to the high powers of 1/w,
resulting from the partial fraction expansion (3.14),
and the domain of w, which now has lower limit m = 0.
Thus, (3.14) cannot be used in the case m = 0.

Nevertheless, despite (3.16), ﬁ;}, exists for all a.
The reason lies in the regularity of R(p? + m?" as a
function of m at m = 0:

= f@)dp’ _ [ L@ dp’
—o (PP MY e ()"
exists because (2.14) exists for x = 0 for all n.

An apparent paradox arises from the fact proved
above that D” exists for all n > 0 while D7 exists only
for n = 0. Comparison of (3.19) and (3.20) makes this
difficult to understand. An explicit proof is therefore
given in Appendix B.

While the partial fraction expansion is thus not
applicable for n > 0, it does permit one to see that
Dy exists for all T'. With w = |p|,

50 3 of(P )
d’ph d
(Dr,cp) (2 )2f (P)J‘ p

- (21”)2L

1 1
x | dp’f(p° +
fr pf(p)(w_p0 e

lim R

m-0

w? dow th(p)

2w

0). (5.5

The analytic functional can be written,using n = p®/w,

J dnf(wn)[—- + iy]

and is, therefore, nondivergent for w — 0. The integral
in (5.5) is, therefore, well defined for all T'.

We remark parenthetically that there are mathe-
matical possibilities to define D} for all I'. But one
must then abandon the definition (5.1) which appears
to us natural from the point of view of physics. If
one discards (5.1), one can employ a regularization of
integrals of the form

[

where h e 8. If distributions of the type T(w) =0
(w < 0), T(w) = o™ (w > 0) can be defined for all
positive integers n, there is no longer any difficulty in
employing the partial fraction expansion (3.14) for all
I'. How distributions of this type can be defined was
shown by Giittinger and Pfaffelhuber.® It introduces
an arbitrary parameter which, in physical interpreta-
tion where p is the momentum, has the dimensions of
a length.

?* W. Giittinger, Fortschr. Physik 14, 483 (1966). We are

indebted to Dr. Giittinger for informing us of his work prior to
publication.
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6. APPLICATIONS

In quantum electrodynamics the photon propagator
in perturbation expansion is of the form

ko) 1
(80— e )i

where the constant ¢ depends on the choice of gauge.
The factor (1/k??|¢,, is not defined, as we have just
seen, but the presence of the k,k, in the numerator
avoids this difficulty. In fact, the argument at the
end of the last section shows that even one factor k,
would suffice to make the integral converge also in
the m — 0 limit, since it provides one more factor w
in the numerator.

The existence of k,/(k%)? for all contours is also
essential in a gauge-independent formulation of
quantum electrodynamics proposed recently.?® There
the generalized function 9" was defined as

1 1
Sy La}i (y_z) o(x £ y)d'y, (6.2)

, (6.1)

Cir

(a;l,‘P)r =

where I' is a suitable contour in the complex x° plane.
This expression thus defines an analytic functional
with ¢ € D(R®) ® 3 as before.

It is defined for all I" in the x° plane. The I'(x?)
which correspond to the contours of Table I were
given in Ref. 10.

Another application of the results of Secs. 3-6 lies
in asymptotic quantum field theory. Nonrenormaliz-
able theories can be treated in perturbation expansion
without encountering divergences by use of Af
(n > 0) and the corresponding spin } functions
SE = (y + 0 + m)Ap. This was shown in a recent paper
by Chen.1

Finally, this same formulation of field theory is
seen to be applicable to particles of zero mass, because
only those D% and y - @D} occur in the kernel B
which are defined for all . It is B which determines
the equations for the S-matrix elements.!? The fact
that the general formalism of asymptotic quantum
field theory? involves only the analytic functionals
A=, A, An, but not A7, Arg, A7, in the equation
for the S operator, is to be considered of noteworthy
importance. It permits this theory to carry through
also in the m — 0 limit for arbitrary n.
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APPENDIX A
We want to prove Egs. (3.19) and (3.20).
One starts by noting that
6(")(1)2 + m2)
= 0"(p} — 0%
1 d
- (— ——) L — 1) + 60° + )],
2p° dp°
_"21 —1)(n+v—1! 1
(n — v — 1! 20(2pH™
X [6(71—\:)((0 _ pO) + 6(n—v)(p0 + (U)].

v=0 v!

(Al)

This is easily proven by induction. One then proves
the auxiliary result

OM(x —w) I y(ntrv—1(m
x" -Zﬂv'( v )(1’>

X —— 8™ x — w) (A2)

wn+
as follows:

>
T=w

a6 [ et
x J 8™ (x — ) f(x)dx.

We now apply (A2) to (Al). One obtains a double
sum which can be rearranged:

EO Z_F(V v') —“EF(V n) +n20 é:F(v ). (A3)

The sum over » in the last term can be carried out,
yielding (n + ¥')/(2*+*»'!) and leaving

14y —Dintv 1

2n+v’

p ' wn+v

X 370 = ) + ()80 + ). (Ad)
The first term on the right side of (A3) can also be

v=o 2w (n—)!
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summed:
EIF(v n) = n! (Zn)_l__
o "\ n/Quy

X [0(w — p°) + 6(p° + w)].

This is identical to a term with ¥’ = n in (A4), so that
the sum in (A4) can be extended to #», yielding exactly
the desired result (3.18).

The proof of (3.19) only requires the observation
that

f (P F PSP dp® = £(—1)"F " (xw).

APPENDIX B

We want to show that, despite the similarity of the
partial fraction expansions (3.19) and (3.20) associated
with Arand A, respectively, the corresponding m = 0
limits D? and D" for n > 0 exist only in the latter case
but not in the former. The difference lies in the sym-
metry properties of these objects. D" has a symmetry
which permits it to be written in terms of w? rather
than w:

(D, @) = ((ﬁ—g)nﬁ, <p),
= f d*ph(p) f dp’f (p) (ip)

X —— [6(p® — ) — 6(p° + w)],

4w
= s f " dwf—l(w)fw dp’f(p®)
47 Jo -

X (_dé)n[ﬁ(p" — ) =" + m)], (Bl
dps

where

=
~

®) = 41—77 f AQh(p).

Since the expression in square brackets is odd in p°,
only the odd part of f(p®) will contribute. Writing

f(PpY — f(—p»] = p°e(p}), we consider the analytic
functional with T(—p®) = —T(p):

f p°dp’ g(po)-— T(p°)

= ]5 f dp’ g(po) s T(p),

1

--3 f_mT(M 5 85 dp”
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If f(pe3, then fi(p®) = [f(p®) — f(=p))I(4p")

is also € 3, and the above equation can be written

(d/dpy)T, f) = —(T, D (B2)
Application of this result » times to the analytic func-
tional in (B1) shows that one obtains, using

o) = () = fora (PO () (> 1),
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(D", ¢) = i wa dwh(w)(—1)"[f (@) — f(—w)},

(B3)
which is a well-defined integral since f,, € 3.
An analogous argument for D7 fails because the
corresponding T(p®) is symmetric rather than anti-
symmetric.
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Instantaneous action-at-a-distance relativistic mechanics of the type considered by Currie and by Hill
is cast into a Hamiltonian form wherein the transformations of the inhomogeneous Lorentz group are
canonical. The Currie-Jordan-Sudarshan zero-interaction theorem is circumvented by renouncing the
demand that physical positions be canonical; the implications for measurement theory of renouncing

this demand are discussed. Examples are given.

I. INTRODUCTION

HE fact that the physical world is basically

quantum mechanical poses a problem for any
classical relativistic action-at-a-distance particle me-
chanics; it must eventually be quantized. There are two
alternative routes which can be followed in attempting
to deal with the problem of quantization. One can
either try to invent new quantization methods, as was
done by Feynman! in attempting to quantize the
action-at-a-distance version of classical electrody-
namics which had been constructed by Wheeler and
Feynman,? or one can try to formulate a relativistic
Hamiltonian particle mechanics and proceed to
quantization by conventional methods. The present
paper is devoted primarily to the classical aspects of
the second alternative; we discuss the construction of
a classical relativistic Hamiltonian mechanics within
the framework of the canonical representations of the
inhomogeneous Lorentz group which preserves world-
line invariance.

Before proceeding, it is in order to ask why anyone
would want an action-at-a-distance theory (rather
than a field theory) in the first place. One obvious
answer is that infinite mass corrections can be

1 R. P. Feynman, Phys. Today 19, 31 (1966); Rev. Mod. Phys.
20, 267 (1948).

2J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157
(1945); 21, 425 (1949).

trivially avoided by deleting the divergent interaction
of a particle with its own field. This, however, is not
the only reason. A description of particle motions
which employs a field as the intermediary carrying the
interaction is most useful when the motion of the
sources of the field can be prescribed, at least to a
reasonable approximation. This criterion is satisfied
only for distant collisions; it fails for close collisions
and bound motions, for which action-at-a-distance
would seem to be more useful. An additional reason
for wanting not only an action-at-a-distance theory,
but also an Hamiltonian theory of the same type as
the nonrelativistic one, arises when one considers the
problem of making relativistic corrections to non-
relativistic theories. For example: The Darwin—Breit
interaction, valid only for use as a first-order pertur-
bation, is all that is presently known of the relativistic
corrections to inter-electronic interactions which
must be accounted for in calculating atomic energy
levels. An understanding of how further corrections
are to be made for such problems requires an under-
standing of relativistic Hamiltonian mechanics and of
approximations thereto.

Single-time? relativistic Hamiltonian mechanics has

3 This is in contrast to manifest-covariant, many-time (one time
for each particle) theories such as the Wheeler-Feynman theory (Ref.
2) and the recent action-at-a-distance relativistic mechanics of van
Dam and Wigner [Phys. Rev. 138, B1576 (1965); 142, 838 (1966)],
which contains the Wheeler-Feynman theory as a special case.
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bation, is all that is presently known of the relativistic
corrections to inter-electronic interactions which
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are to be made for such problems requires an under-
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which contains the Wheeler-Feynman theory as a special case.
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been previously considered by Dirac, Thomas,
Bakamjian, and Foldy.* Currie, Jordan, and Sudar-
shan®® have shown that a relativistic two-particle
Hamiltonian mechanics in which, (a) physical
positions are canonical variables, (b) transformations
of the inhomogeneous Lorentz group are canonical
transformations, and (c¢) world-line invariance is
demanded, is incompatible with interaction; their
zero interaction theorem was extended to three
particles by Cannon and Jordan,” and to N particles
by Leutwyler.® The possibility of circumventing their
zero-interaction theorem by dropping the requirement
that positions be canonical has been pointed out by
Kerner.® A Newtonian-like approach, yielding a
single-time instantaneous action-at-a-distance relativ-
istic mechanics has been made by Currie!® and by
Hill'!; a simple example of such a theory has been
given by Kerner.1?

When one first contemplates relativistic Hamil-
tonian mechanics, one is faced with, and perhaps
troubled by, the fact that interactions are instan-
taneous (because the equations of motion are ordinary
differential equations). Inasmuch as the very notion
of “instantaneous” is not relativistically invariant,
how can such an instantaneous action-at-a-distance
mechanics be compatible with special relativity? To
answer this we first remark that a classical particle
dynamics is just a concise description of the possible
particle world lines contemplated by the theory. The
only requirements placed on such a description of
point particles by relativity are that: (a) a set of
allowed particle world lines is allowed, no matter
which inertial observer’s coordinate system is used to
describe them (world-line invariance), and (b) that
the dynamical equations which provide this concise
description—i.e., whose solutions are allowed particle
world lines-—have the same form in every inertial
frame (form invariance of the equations of motion).
If differential equations are used to provide this
description, conditions (a) and (b) can be satisfied,®-1!
if the equations hold for all time so that instantaneous

4 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949); L. H. Thomas,
Phys. Rev. 85, 868 (1952); B. Bakamjian and L. H. Thomas, ibid.
92, 1300 (1953); B. Bakamjian, ibid. 121, 1849 (1961); L. L. Foldy,
ibid. 122, 275 (1961). The various approaches to special relativistic
dynamics before 1965 have been reviewed by P. Havas in Staristical
Mechanics of Equilibrium and Non-Equilibrium, J. Meizner, Ed.
(North-Holland Publishing Company, Amsterdam, 1965), p. 1.

5 D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod.
Phys. 35, 350 (1963).

¢ D. G. Currie, J. Math. Phys. 4, 1470 (1963).

7J. T. Cannon and T. F. Jordan, J. Math. Phys, 5, 299 (1964).

8 H. Leutwyler, Nuovo Cimento 37, 556 (1965).

8 E. H. Kerner, J. Math. Phys. 6, 1218 (1965).

10 D. G. Currie, Phys. Rev. 142, 817 (1966).

11 R, N. Hill, Bull. Am. Phys. Soc. 11, 96 (1966); J. Math. Phys.
8, 201 (1967).

12 E. H. Kerner, Phys. Rev. Letters 16, 667 (1966). See also D.
G. Currie and T. F. Jordan, ibid. 16, 1210 (1966).
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initial data in one frame can be related to instantaneous
initial data in another.. When discussing transforma-
tions between inertial frames, we will, however, find
it convenient to regard the physical states of a system
as the solution curves of the equations of motion,
rather than as the sets of initial data which imply
these solution curves; thus we employ the notion of
state sub-specie aeternatis rather than the (non-
invariant) notion of instantaneous state frequently
used with differential equations.

Previous approaches**® to relativistic Hamiltonian
mechanics have begun with the Poisson bracket
relations characterizing the inhomogeneous Lorentz
group; the task of formulating relativistic particle
mechanics was regarded as a matter of constructing
a representation of the ten infinitesimal generators
of the inhomogeneous Lorentz group in terms of
canonical coordinates and momenta. The question of
physical interpretation—i.e., of the relation between
canonical coordinates and momenta and physical
particle positions and velocities—was answered by
assuming that physical and canonical coordinates
were, or at least could be, the same. The fact that such
a physical interpretation is incompatible with world-
line invariance was shown by the Currie-Jordan-
Sudarshan zero-interaction theorem.®

We avoid such difficulties of interpretation by
approaching the problem from the more primitive
Newtonian level. We assume that an instantaneous
action-at-a-distance mechanics of the type considered
by Currie and by Hill has been given. The physical
interpretation of the Hamiltonian dynamics, i.e., the
relation between physical and canonical variables,
will then be fixed by the way the Hamiltonian scheme
is obtained from the Newtonian-like mechanics. The
Currie-Jordan-Sudarshan zero-interaction theorem
shows that one cannot hope to pass from the
Newtonian level to a Hamiltonian scheme with
Lorentz transformations canonical via a Lagrangian,
as is done nonrelativistically.!® Therefore, we approach

13 A Lagrangian may be found, at least in some cases (see pre-
ceding footnote), if one is willing to pay for having physical positions
canonical by giving up the requirement that the transformations of
the inhomogeneous Lorentz group are canonical transformations.
However, if the transformations of the inhomogeneous Lorentz
group are not canonical, equivalent observers will use canonically
inequivalent Hamiltonian formulations. Canonically inequivalent
Hamiltonian formulations lead to inequivalent quantum theories if
standard quantization methods are applied [P. Havas, Bull. Am.
Phys. Soc. 1, 337 (1956); F. J. Kennedy, Jr., and E. H. Kerner, Am.
J. Phys. 33, 463 (1965; 34, 271 (1966)]; thus the surrender of the
requirement that the transformations of the inhomogeneous Lorentz
group be canonical transformations leads to inequivalent quantum
theories for equivalent observers. The alternative we have chosen of
surrendering the requirement that physical positions be canonical
might appear at first sight to lead to an interference between
position, measurements at spacelike separations in a quantum
theory; however such an interpretation ignores the description of the

measurement process appropriate to an instantaneous interaction
theory as we point out in Sec. VL.
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the Hamiltonian formulation via the more general
route afforded by the Lie-Konigs theorem,** as
suggested by Kerner.

Section 11 is devoted to a discussion of the approach
to Hamiltonian dynamics via the Lie-Konigs
theorem. In Sec. III we consider the infinitesimal
invariance transformations of a system of differential
equations, and investigate the conditions under which
a subgroup of these invariance transformations will
be canonical transformations in the Hamiltonian
formulation obtained via the procedures of Sec. 1I.

Section 1V applies the general considerations of
Secs. II and I to relativistic dynamics. The trans-
formations of the inhomogeneous Lorentz group are
written down and the ten infinitesimal generators
identified. The separation of external and internal
motions by the introduction of a suitable canonical
coordinate which is a generalization to relativistic
dynamics of the nonrelativistic center of mass is
discussed. Section V is devoted to examples. In
Sec. VI a new proof, valid in one, two, or three
dimensions, of the Currie-Jordan-Sudarshan zero-
interaction theorem is presented to clarify the role
of the assumption that physical coordinates can be
canonical coordinates. The implications of the
surrender of this requirement for position measure-
ments in a quantum theory are briefly discussed.

II. THE HAMILTONIZATION OF A SYSTEM
OF DIFFERENTIAL EQUATIONS

Lie and Konigs have shown that any even order
system of differential equations can be cast into
Hamiltonian form.'* In this section a constructive
procedure, brought out by Kerner,*! for effecting
this Hamiltonization is outlined. Expressions are
found for Poisson brackets in terms of the original
physical (rather than the canonical) variables.

We begin with a system of analytic'® second-order
differential equationsa; = F, (x;,*** , X,; 01, , 0,5 1)
specifying particle accelerations as functions of
position, velocity, and time. These are first rewritten
as the analytic first-order system

(N

Here we have in mind that y,=1¢, y, =x,, h, =
U; = Yinsand by, = F; O s Vui Vgt 7 s Vans

d}’z/d}’o = hi(_yo’yl! e ’y‘Zn)’ i= 19' o ,2'1-

4 E. T. Whittaker, A Treatise on the Analytical Dynamics of
Particles and Rigid Bodies (Cambridge University Press, New York,
1960), p. 275.

15 E, H. Kerner, Bull. Math. Biophys. 26, 333 (1964).

‘18 We restrict ourselves to equations for which the F, are analytic
functions in the neighborhood of physically realizable real values of
their arguments in order that we might have classical existence and
uniqueness theorems on differential equations available.
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yo) fori=1,---,n We seek to derive Egs. (1) from
a variational principle of the form

o [jg"lu,(dyi/dyo) +U] =0 @

wherein the y,(y,), i=1,-+,2n are to be inde-
pendently varied. The Euler equations of (2) take the
form Y22 T,;(dy,/dy,) = 0 where the matrix T';; is
defined by

Iy; = (9U,[dy;) — (9U;/dy,). (3)
In order that it be possible to solve the Euler equations
for the derivatives (dy;/dy,), the 2n X 2n matrix I';
(with i # 0, j # 0) must be nonsingular. Solving
these Euler equations for dy,/dy, yields the specified
equations (1) if the U, satisfy the differential
conditions

[
=

™M
—
5
Il
N

-, 2n. (4)

[
It
o

Here we have allowed i = 0 because the equation for
i = 0 is a consequence of the other 2n equations.

Once Eqs. (4) have been solved to yield a set of U,
with nonsingular I';; (i # 0, j# 0), and hence a
variational principle of the form (2), a Hamiltonian
formulation can be obtained by solving Pfaff’s
problem to reduce the differential form 2" Udy, to
>n_ PdQ; (the fact that this can always be done is the
principal result of Pfaff’s classic memoir'?). The Q,
and P, are the canonical coordinates and momenta.
The Hamiltonian is H = —U,, and must be re-
expressed in terms of the canonical variables P, O,
obtained by solving Pfaff’s problem.

A. Poisson Brackets
If we now think of the P,, O, as functions of the y, ,
the equality 32" Udy; = X7 P,dQ, implies that

U, = 3 P00y )

By the use of (5) in (3), we discover that the matrix
[, (1 # 0, # 0) is actually a Lagrange bracket

Iy= i 0P, 90

P ——) =oyt (©
The Lagrange and Poisson brackets of a set of 2n

ay; 0y
independent variables are reciprocal matrices. Hence,

2n
,eru[yj’ =296, i#0, (7

Since I';, is nonsingular, Eqgs. (7) can be inverted to

17 Pfaff’s problem is discussed in considerable detail with an
historical summary, by A. R. Forsyth, Theory of Differential
Eguations (Dover Publications, Inc., New York, 1959), Vol. 1.
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yield the Poisson brackets [y;, y;] as functions of the
y;- With these known, the Poisson brackets of any
two functions ® and ¥ of the y; can be obtained from

i 9D 3¥
Z E[yl,

i=1j=1

(@, %] = )
without having to solve Pfaff’s problem to re-express
® and ¥ in terms of the Q, and P,. We note that (7),
and the fact that #, = 1, can be used to write the
solution of (4) for the 4; as

= — é[yj, Yl )]

Equation (9) becomes the usual expression dy;/dy, =
[y;, H]if the U, are independent of y,.

B. Solution of Pfaff’s Problem

The previous results can be used to derive a method
for the solution of Pfaff’s problem which was first
given by Clebsch.”® For any quantity @, it follows
from (5) and (8) that

2n 2n (D

PPIORP —ZPk[Qk,cbl
Clebsch’s results now follow by letting ® = O, in (10),
and ® = Q,,V = Q, in (8) to obtain

2n 2n
3 30 v U 5 9 _,,

(10)

i

1
i=1 j= ay, (1 a)
2n 2n
S Sy 0] 2222, (11b)
i=1 j=1 a a

Equations (11) provide a complete set of necessary
and sufficient conditions for the determination of the
Q.. The conditions on the P, follow from a similar
application of (8) and (10):

n 2n a

2 2 Ly ylUi = ay. =P, (12a)
2 2 oP, OP
2 20y ]a 5, — =0, (12b)
2n 2n a 8P
Z g ; aQLa '=0,,. (12¢)

Systematic integration of (11) and (12) produces a
solution of Pfaff’s problem; different solutions are
canonically equivalent.?®

18 A. R. Forsyth, Ref. 17, pp. 210-214.

1% The canonical transformations connecting different solutions of
Pfaff’s problem are known (in the context of classical Hamiltonian
dynamics) as Mathieu transformations (E. T. Whittaker, Ref. 14, p.
301). A method, due to Clebsch, for obtaining the general solution of
a given Pfaff’s problem from any particular solution is discussed by
A. R, Forsyth, Ref. 17, pp. 194-197.
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It is worth remarking at this point that there is, in
general, more than one solution to (4) with non-
singular I';; (for example, replacement of I';; by
CT,;, C a constant, prodiices a new solution). Since
the I';; are canonical invariants, different solutions
yield canonically inequivalent Hamiltonizations of
the original differential equations.

III. INVARIANCE TRANSFORMATIONS

In this section the structure of the infinitesimal
transformations which leave the system (1) invariant
is considered. We derive the condition that a particular
transformation leaves (1) invariant and the condition
that it be canonical. The conserved quantity associated
with a canonical transformation is identified and the
transformation generated by this conserved quantity
is computed. The (canonical) invariant subgroup of
transformations which leave individual solutions of
(1) invariant is identified and the factor group
obtained by decomposing the canonical transforma-
tions with respect to this invariant subgroup is shown
to be identical with the canonical transformations
(generated by the usual Poisson brackets) which
leave the independent variable (the time) fixed. An
investigation of the conditions under which the
action can be made invariant under a subgroup of
canonical transformations concludes this section.

A. Notation

We consider infinitesimal transformations

Vi yi=yi+egi o>V s yem)  (13)
which leave the system (1) invariant. Here the Greek
o indexes the different transformations. The differ-
ential operator,

2n
L,= 20 g%0/0y;, (14

effects the transformation (13) on the argument of
any function; the substantive derivative,

2n
D =Y hdjdy;,

i=0

(15)

effects an infinitesimal transformation along the
solution curves of the system (1). If we permit the
Greek letters indexing the transformations to run
over the independent transformations generating a
subgroup, the commutator of two such transforma-
tions is expressible as a sum of these independent
infinitesimal transformations:

(16)

Lﬂg: agz z Clﬂg'
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The C}; are the structure constants of the Lie group
formed by the subgroup.

B. Conditions for Invariance and Canonicity

The conditions that the transformations (13)
leave Eqgs. (1) invariant are obtained by inserting the
transformation (13) into (1), expanding to first order
in €, and demanding that the coefficient of e vanish.
The conditions are

L.h; — Dg; + h,Dgg = 0. (17

A transformation is canonical in an Hamiltonian
formulation if it adds an exact differential to the form
dr P, dQ, — Hdt which appears in Hamilton’s
principle. This is equivalent to adding an exact
differential dQ, to the form 32" U, dy, which appears
in (2). By computing the effect of the transformation
(13) on this form, we find that the condition that (13)
be canonically represented is the existence of an €,
such that

2n
LaUz' + Z Ua(ag;t/ayz) = aQa/ayz . (18)
=0
We introduce a quantity G, defined by
2n
G, =Yg, — Q,. (19)
i=0

The condition (18) that (13) be canonical is then the
existence of a G, such that

2n
Zog:F” = 0G,[0y;.

A solution G, of (20) will exist if and only if the
integrability conditions guaranteeing the equality of
the mixed partial derivatives 0%G,/dy,;0y, are satisfied.
If we differentiate (20) with respect to y,, require the
result to be symmetric under the interchange j<> &,
and use the integrability conditions

or, oLy,

oy, Oy, Oy,

on the I';; [which guarantee the existence of a set of
U, such that (3) hold], we obtain

(20)

=0 @1

2 9g? dg"
LT, + Z(ﬁ T, + & Fﬁ) =0, (2
=o\0y; A

as another statement of the conditions that (13) be
canonical. The conditions (17) that the differential
equations (1) be invariant under (13) follow easily
from (22). By multiplying (22) by 4;, summing on j
from O to 2n, and using (4), we obtain

2n

E (Dg; — Lh)l = 0.

i=0
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If we split off the i = 0 term and use (4), we obtain
2n
2 (Dg} — L,h; — h;Dgp)l'y, = 0
i=1

from which (17) follows because the 2n X 2n matrix
I';x(i, k £ 0) is nonsingular. The converse, however,
does not hold; (22) is not a necessary consequence of
7.

We are now in a position to see the issues involved
in casting a dynamics, originally specified as a set of
differential equations in the physical coordinates and
velocities, into Hamiltonian form with an M-
dimensional subgroup of the invariance transforma-
tions canonically represented. We must find a set of
I';; such that (a) det I';; % 0 (i,j # 0), (b) (4) and
(21) are satisfied, and (c¢) (22) is satisfied for each of
the M-independent transformations specifying the
subgroup.

C. Conservation Laws and Generators

If we multiply (20) by #;, sum on j from O to 2#, and
use (4) we discover that G, is conserved. This“con-
stitutes a proof of Noether’s theorem in the present
context??; G, is the conserved quantity associated with
the transformation (13). The association of the
conserved quantity with the transformation depends
on the way in which the dynamics is cast into
Hamiltonian form [i.e., which solution of (4), (21),
and (20) is taken]; canonically inequivalent Hamilton-
izations [with (13) canonical] can lead to the
association of a different conserved quantity with (13).

The conserved quantity associated with an in-
variance transformation frequently appears as the
generator of that transformation. In order to in-
vestigate this we compute the Poisson bracket
[yx» G,] of G, with one of the variables y,, k 0. If
we multiply (20) by [y, y,], sum on j from 1 to 2x,
and use (7), (8), and (9) we obtain

Ve» Gal = & — gohy. (23)
The result (23) is correct for y, as well as for the y,,
k 5% 0 for which it was computed; it yields [y,, G,] = 0
consistent with the fact that the Poisson bracket (8)
does not transform the independent variable y,. We
note that G, generates the transformation (13) with
which it was associated only if g =0; if g&#0
the formalism compensates for the inability of the
Poisson bracket (8) to transform y, by shifting the
other variables an amount — eg2(dy,/dy,) along
the solution curves of (1).

20 A discussion of Noether’s theorem is given by E. L. Hill, Rev.
Mod. Phys. 23, 253 (1951). See also R, Courant and D. Hilbert,
Methods of Mathematical Physics (Interscience Publishers, Inc.,
New York, 1953), Vol. 1, pp. 262-266.
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D. Transformations Which Change Physical States

The result (23) can be better understood by taking
a closer look at the group of invariance transforma-
tions of (1), which group we call G. The subgroup of §
that is canonically represented will be denoted by G, .
We first note that there is a subgroup of G, which we
call ¥, which leaves individual solutions invariant,
i.e., which carries a solution y; = fi(y,) of (1) into
¥; =f;(y,) with the same f;. This subgroup J€ is
generated by transformations of the form

yi_)y1{=yi+€(D(y05yl9.'~:y2n)hi, (24)

where @ is an arbitrary function. The transformations
(24) are always canonical, since (20) is satisfied (with
G = 0). Furthermore, ¥ is an invariant (normal)
subgroup, since the commutator of a transformation
of the form (13) with one of the form (24) is in J¢:
By direct computation, using (17), ® Dg* — L(Dh,) =
[®Dgg — (L,D)]A, which is of the form (24). Thus we
can decompose § (or G,) into cosets relative to J€ and
consider the factor groups (quotient groups) §/3 and
§./J. Each element of a given coset has the same
effect on a solution curve y, = f;(y,) of (1). Thus if we
identify physical states with the solution curves (i.e.,
think of the physical state as a state sub-specie
aeternatis rather than an instantaneous state), it is the
transformations of the factor groups §/X and G,/3
which change the physical state.

Each coset in the decomposition relative to ¥
contains one and only one transformation which
leaves y, fixed; thus, the transformations which leave
¥, fixed provide faithful representations of §/J€ and
G,/3. We can now see the significance of the result
(23): By using the G, associated with a transformation
g7 as a generator [with the Poisson bracket (8)] the
homomorphic mapping of §, onto the faithful
representation of §,/J by canonical transformations
which leave y, fixed is automatically accomplished.
Commutators in G, are mapped onto Poisson brackets
under this homomorphism: By direct computation
using (8), (17), (23), and the Jacobi identity we
obtain

Lﬂgai! - Lagiﬁ = [yw [Ga’ Gﬂ]] + (Lﬂgg - Lagg)hh
from which the use of (16) and (23) produces

[yi’ [Gm! Gﬁ]] = 2 C:ﬂ[yi’ Gy]'

The preceding analysis helps to show why Hamil-
tonian dynamics with the usual Poisson brackets,
which do not transform the time, can comprehend
relativistic particle mechanics despite the lack of an
absolute time: The canonical transformations generated

(25)
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with these brackets provide a faithful representation
of the group §,/3€ of canonical transformations which
change physical states.?

E. Transformations Which Leave the Action Invariant

A garden variety canonical transformation adds an
exact differential dQ to the form 2" U, dy, appearing
in the variational principle (2) and changes the action
by (dQ; only those transformations for which
dC) = 0 leave the action invariant. We now inquire as
to the conditions under which a canonical trans-
formation can be found which makes the action

invariant under a specified subgroup of the canonical

transformations. Such invariance of the action is
seen in Sec. IV to correspond to the usual notion of
manifest invariance for translations and spatial
rotations.

We begin by supposing that Q, 5 0 in (18) for at
least some of the transformations which generate a
subgroup of canonical transformations under which
the action is to be made invariant. If there exists a
function A (y,, 31, * * * yap) such that

LA=—-0, (26)

for each of the independent infinitesimal transforma-
tions generating the subgroup, the action can be
made invariant under the transformations of the
subgroup by adding dA to the form 2" U, dy,. Such
an addition effects the canonical transformation

U,— Ul = U, + 0A[dy,. 27

It follows from direct substitution and the use of (26)
that U, satisfies (18) with zero on the right-hand side.

A solution A to (26) exists if and only if the
integrability conditions T,; = 0 are satisfied where
T,s is defined by

Typ = LyQ, — LQy — 3 CLQ,. (28
?

Here the (], are the structure constants for the
subgroup as defined by (16). T,, can be computed by
multiplying (18) by g# and summing on i from 0 to 2n
to obtain L,Q,, subtracting the corresponding

expression for L), and using (16) and (19) to
obtain

2n
Ty = Zo(gfLaUz- — giL,U) + D C4G,. (29)
i= ¥

21 By working only with transformations which change physical
states (which is possible because we do not have redundant quanti-
ties, such as the separate time coordinates for each particle which
appear in manifest covariant formulations) we avoid the constraints
whose presence causes difficulties in the quantization of classical
Hamiltonian theories [these difficulties are discussed by P. A. M.
Dirac in Lectures on Quantum Mechanics (Belfer Graduate School
of Science Monographs Series, Yeshiva University, New York,
1964)].
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The first term of (29) may be rewritten as
2 (gfg5 — £ighoUfdy; = 2 giT.85
The use ;)f (8), (20), and (23) then produces the result
T,y = —[G,, Gs] + g C4G, . (30)

It follows from (25) that [G,, G4l = 3, C1,G, + dyy
where the d,; are constants. Hence, the integrability
conditions T,z = 0 can be satisfied if and only if the
d,s can be made zero by adding constants to the
conserved quantities G,. Whether or not the d,; can
all be made zero depends on the structure constants
C?, specifying the subgroup. For the inhomogeneous
Lorentz group this can always be accomplished.2? For
the inhomogeneous Galelei group, the d,; cannot
always all be made zero; this is why d€2 # 0 in the
usual application of Noether’s theorem to extract the
center-of-mass theorem of nonrelativistic mechanics.?

IV. APPLICATION TO RELATIVISTIC
MECHANICS

In this section the g specifying the transformations
of the inhomogeneous Lorentz group are obtained and
their commutators computed. The conserved quanti-
ties which generate these transformations are identified.
The section concludes with the discussion of a suitable
generalization of the nonrelativistic center of mass.

A. Notation

It is convenient at this point to change to a vector
notation. The formulas of the previous sections
continue to hold if we let each of the y;, i# 0
become a 3-vector; y, = ¢ remains a scalar. The
original dynamics is now

a, = F(x, - s V)

The first-order rewrite of the dynamics becomes
dy,/dy, = h,, the differential form in (2) becomes

i U-dy, + Uydy,, and each element of I'; be-
comes the dyadic

’Xn;vly"'

«— —
T;; = U,(9/dy,) — (9/9y)U;,

where the arrow indicates the direction in which the
gradient d/0y operates.

B. Transformations of the Inhomogeneous
Lorentz Group

The identification of the g? [in accordance with
(13)] which specify the transformations of the inhomo-
2% For a proof of this statement, as well as further references, see

Currie, Jordan, and Sudarshan, Ref. 5., Appendix B.
8 E, L. Hill, Ref. 20, Sec. VII, Part D.
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geneous Lorentz group is most easily done from the
passive viewpoint. Thus, we define time translation
by yo —> ¥y = Yo — €, ¥;=> ¥, =¥, to obtain

gl=—1, gl'=0, i=12--,2n (31)

Here superscripts denote, in an obvious notation, the
different transformations. We note that the generator
of time translations in the canonical formalism
generates not (31), but instead, the member of the
coset (in the decomposition of G, relative to J) to
which (31) belongs for which g, =0, namely
Yo—>Yo=Jo, Yi— Y, =Y; + €h;. The g, for this
canonical time translation are therefore

cTT

g™ =0, g™ =h, i=12---,2n (32
We recall that the first #y, are the physical position
coordinates; thus, space translation in the direction
of the unit vector i is defined by y,—>y; =y,
yz—)y: = yz + elsyi-f»n_’yi,q‘»n = yi+n’i= 1’25' PR/
Hence, with the unit vectors specifying direction
indicated in parentheses,

=0 g0 =1, gl =0,

i=1,2,---,n (33)

Similarly spatial rotations about an axis specified by
the unit vector th are defined by y,— ¥, = yo,
Yo=Y, =Y+ e xy,,i=1,2-,2nfromwhich

Sy =0, M) =mxy, i=12"-",2n.

(34)

We turn next to the pure Lorentz transformations,
which we also approach from the passive viewpoint.
We consider two frames S and S’ which move with a
relative velocity v = fi tan 5. We suppose that in S,
a set of particle world lines which form a solution of
the dynamical equations (i.e., a physical state) is
described by x; = f;(¢) and that this same set of world
lines (same physical state) is described as x; =
f/(¢")in S’. The coset (relative to J¢) of transformations
to be associated with the Lorentz transformation from
S to S’ consists of all transformations X, — x;,
v; —v,, t — 1t which carry x, = f,(¢t) onto x; = f (¢').
In Fig. 1, we picture the projection [fi - x, = fi - f,(¢)
in S] of one of these world lines in the direction of
relative motion of the two frames. The intersection
of the equilateral hyperbola 2 — (fi- x)? = 12 with
the ¢’ axis marks off the time to which the number £,
is assigned in S’. The element of the coset associated
with the Lorentz transformation from S to S’ which
leaves the independent variable (the time) fixed maps
world points corresponding to the same numerical value
of the time in their respective frames onto each other.



CANONICAL FORMULATION OF RELATIVISTIC MECHANICS

Ehoxte 2

Fi1c. 1. Lorentz transformation which leaves the time fixed.

Thus the point Q, [which is assigned coordinates
x; = £,(0), = 0 in S] is mapped onto Q; [which is
assigned coordinates x, = f;(0), ' =0 in S’] under
this element of the coset. Similarly, P;, with co-
ordinates x; = f,(¢)), { = t, in S is mapped onto P;
with coordinates x; = f(#)), t’ = #,in S’. Because this
transformation involves a shift along the world lines,
specification of the finite Lorentz transformation
would require solution of the dynamical equations to
obtain the coordinates x; = f,(1;), t = t, of P, in S.
These equations can be trivially solved, however, for
the infinitesimal transformation. If now we replace
B by the infinitesimal ¢, so that the relative velocity
of the two frames is efi, we see that £, — 7, = el - X,(P,).
To lowest order in €, then,
XYP) = x{(P,) + e[v(P) - x,(P,) — 1,]

and
vi(PY) = v(P) + €la(P)f - x,(P))

— &+ v(P)i - v(P)):
Expressed in the variables y,, y, this reads y, — y,,

Yi— i = ¥ + e[f(f-y) — yohil,

Yirn = Yion = Yirn + elh,, (f-y)— iy (Bey )l
i=1,2,---,n
from which
g () = 0, gi"(A) =h(fi-y) — yoft,
glT () = h, (R-y) — B+ yi (R,
i=12-,n
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To complete the discussion of the Lorentz trans-
formation, we mention briefly another element of the
coset (relative to J) which is associated with the
Lorentz transformation. For some purposes, it is
convenient to have world points on the world line of
one of the particles—say the kth—remain unshifted.
This transformation is indicated in Fig. 2; in this case
the point P, stays where it is, but the world points on
all of the other particle’s world-lines shift; thus P;
shifts to P; . For the infinitesimal version of this trans-
formation we have

t—t' =t —efi-xg,

X; — Xj = X; + e[v,i - (x; — x;) — th],
and

ViV =V, + e[Fii - (x; — x) — i + vy, - )],

We see that this transformation differs from (35) by
an element of J€ [the element for which @ = x, - fi in
(24)] in accordance with the discussion of Sec. III.

In order to verify that the transformations (32)-
(35) which leave y, fixed form a representation of
the inhomogeneous Lorentz group, we compute their
commutators. We find, with the unit vectors on which
the transformations depend indicated in parentheses,

Ler(Dgf () — Lex(@)g" M =0,  (362)

Lo () — Lex(Dgf™ =0,  (36b)
Lgp()giR(h') — Lep(h)gf () = —gf™(h x '),

(36¢)

Lsn(ﬁl)gzCTT - LCTTg?R(ﬁl) =0, (36d)

Ler(igS™ () — Ler(Dgd™() = —gf"(h x 1), (36e)
Lio(R)gFT(i) — Li()gl"(R) = gi(h x &), (36f)

LLT(ﬁ)gETT - LCTTg%T(ﬁ) = ‘—g?T(ﬁ), (36g)

Lio(@)gd™(d) — Ler(Dgl™ () = —(a-De™,  (36h)

Ly(A)gSR(h) — Lep(i)gl"(B) = —g/" (R x ).
(36i)

These may be verified by using the definition (14) of
L, and [in the case of (36d, f, g, and i)] the statement
(17) of invariance of the original differential equations.
These transformations which leave the time fixed are
the ones generated by the conserved quantities in the
canonical formalism; if we assign the letters H, P,
J, K to the generators of time translations, space
translations, spatial rotations, and pure Lorentz

24 This member of the coset was employed by the authgr (R. N
Hill, Ref. 11) in the derivation of a pair of integro-dlﬁqrentnal
equations for the forces of an instantaneous action-at-a-distance
description of two charges interacting via electrodynamic forces.
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FiG. 2. Lorentz transformation which leaves points on the
world line of the kth particle unshifted.

transformations, respectively, we have the Poisson
bracket equivalent of (36) (here the Poisson bracket
of two vectors A, B is taken to be the dyadic [A, B] =
. 0f,[A4;, B;] where the f, are the basis vectors i,
j, k, of Cartesian coordinates):

[P,P] =0, (37a)
[P, H] =0, (37b)
[J3,J] = —1xJ, (37c)
[H,3] =0, (37d)
[P,J]=—1xP, (37¢)
K,K]=1xJ, (37f)
[H, K] = —P, (37g)
[P,K] = —IH, (37h)

J,K] = —I x K. (37i)

Here the letters (a)-(i) indicate the correspondence
between Eqs. (36) and (37); in Eq. (37) it is assumed
that neutral elements have been eliminated by adding
suitable constants to the generators, if necessary.

C. Conserved Quantities and Generators

The conserved quantities H, P, J, and K which
generate the transformations of the inhomogeneous
Lorentz group can be identified from (19) if Q, is
known. These conserved quantities are all canonical
invariants in the sense that their dependence on the
physical positions, velocities, and time is unchanged

ROBERT NYDEN HILL

by adding an exact differential to the form > U, dy, in
(2). This is clear from (20) when one notes that the
Lagrange bracket I';; is a canonical invariant while
the relation (4) guarantees that all transformations in
the same coset in the decomposition of S, relative to
¥ produce the same 9G,/dy;. The Q,, U,, and the U;,
however, are not canonical invariants. In fact, the
considerations concerning invariance of the action at
the end of Sec. III can be exploited to make all of the
Q, for the inhomogeneous Lorentz group zero if a set
of g which form a representation of the inhomo-
geneous Lorentz group (i.e., which satisfy the
commutation relations (16) with structure constants
Cl; appropriate to the inhomogeneous Lorentz
group) is used. The transformations (32)-(35) which
leave the time fixed constitute such a set, as evidenced
by (36). However, the use of (32) as the representative
element of the coset of time translations (for which
Qerpr is to be made zero) would lead to the identifi-
cation of >2" h, - U, rather than the Hamiltonian-U,
as the generator of time translations (it would also
lead to time-dependent U, and U,). If the Hamil-
tonian-U, is to be the generator of time translations,
we must, instead, use the gT* of (31) as the repre-
sentative element of the coset of time translations.
The replacement of the g&T" of (32) by the gI™ of (31)
will not, however, yield a representation of the
inhomogeneous Lorentz group without a compen-
sating modification in the generators of the pure
Lorentz transformations, as is clear from (36h). What
must be done is to replace g-T(f) and the glT(f) by
another element of the coset to which they belong,
i.e., by the “modified Lorentz transformation”

g0 T(0) = D(R),
MLT/ A LT a (38)
g, () = g (B) + O(A)h,,
where ®(fi) depends a priori on y,, i, and the y;. If
we replace Lopr, g7 by Lpg, g7* and Lyg, g-T by
Ly, Y07 in Eq. (36), we obtain [from (f), (g), (h),
and (i)] conditions on ®(fi) whose satisfaction
guarantees that (31), (33), (34), and (38) form a
representation of the inhomogeneous Lorentz group.
These conditions, obtained with the aid of (17), are

[Lyr(B) + () D]O(f')

— [Lyz(f) + O@)DIO(R) = 0, (39f)
20 _,, (399)

9y,
L (DO(R) = —a -1, (39h)
Lgp()O(fi) = O(f x ). (391)
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[In Eq. (39) conditions are labelled (f)-(i) to indicate
the parts of (36) from which they come.] A possible
solution of (39) is

o) =

—i-Q, (40)

where Q transforms like a physical coordinate,? i.e.,
Q satisfies

[Q,K] = [Q, HIQ — Iy, (41f)
2Q/ot =0, (41f, g)
Q. P=I (41h)
[Q,J]=—1xQ. (41i)

The letters (t)—(i) indicate which of the conditions (39)
each of the conditions (41) is sufficient to guarantee;
the Poisson brackets and generators have been used to
effect the transformations. The modified Lorentz
transformation (38) [with (40) and (41) satisfied]is that
member of the coset associated with the Lorentz
transformations which leaves points on the invariant
world line traced out by Q unshifted. If Q were chosen
to be the kth physical particle coordinate x, , we would
have the member of the coset indicated in Fig. 2. Sub-
sequently we will find it advantageous to let Q be
the center of inertia.

Since the g* of (31), (33), (34), and (38) [with (40)
and (41) satisfied] form a representation of the
inhomogeneous Lorentz group, the €, can all be
made zero with this set of g7. The conserved quantities
H, P, J, and K can then be identified from (19); they
are: ‘

n 2n
H=-U,, P=3U,, J=Yy,xU,
i=1 i=1 (42)

2n 2n
i-K=>g"(h) U, — ﬁ-Q[UO+ zhi-U{I.
i=1 i=1

We note that the expressions for H, P, and J are
consistent with the usual expressions for non-
relativistic systems for which U, =P;, U, =0,
i=1,2,---,n, where the p, are the mechanical
particle momenta. By writing out the conditions (18)
for the translations and spatial rotations [with 2, = 0

25 The conditions (41) characterizing the transformation prop-
erties of an invariant world line are just the transformations (31),
(33), (34), and (35) for physical coordinates expressed with the aid
of Poisson brackets and generators. These conditions were first
derived by M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 62
(1948); they were used by Currie, Jordan, and Sudarshan as a
starting point in the proof of their zero-interaction theorem. The
condition (41a) was written without the — it by these authors because
their K did not contain the term —P¢ (and was not conserved). We
have chosen to retain the — Pz in order that K might properly Lorentz
transform all points on a world line rather than just those at ¢ = 0;
this choice of K is the choice appropriate to the notion of state
subspecie aeternatis which we employ.
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and the g? of (31), (33), and (34)], we obtain:
oU, dU; r 0 d 6
9 _ 0, —_ — U, =
dye 0y g 0y, g oy,
- 2n a
(v % )Uo =0, 3
i=1 aYJ
and

zn(yJ )U—IxU—O
0y,

which are the usual statements of manifest invariance
under these transformations, namely that U, and the
U, are independent of time, invariant under space
translation, and transform, respectively, as scalar and
vector functions of the y, under spatial rotations.
With respect to the Lorentz transformations, the term
“manifest invariance” has been traditionally reserved
for formulations employing spinorial and tensorial
representations of the inhomogeneous Lorentz group.
Since we do not have a full complement of four-
vectors, the interpretation of (18) for the effect of the
Lorentz transformations (using the g™ with
Qe = 0)on the U, is unfamiliar, although it can be
used to give an alternative demonstration of the
transformation properties (37) of the generators,
which do make up a four-vector and an antisym-
metric four-tensor. In any event, the requirement that
U, and the U, be so adjusted that the generators take
the form (42) may be regarded as the partial pre-
scription of a “standard form” for U, and the U,.

D. Separation of External and Internal Motion

In nonrelativistic mechanics, the motion of the
center of mass can be solved for trivially by using the
conservation laws. This has the practical advantage
of permitting one to ignore external motions and
pass immediately to an investigation of the motions
of internal coordinates. In order to gain a similar
advantage relativistically, we would like to introduce
a canonical coordinate involving only the generators
H, P, J, and K which would serve as a relativistic
generalization of the nonrelativistic mass center. The
problem of generalizing the nonrelativistic mass
center for an arbitrary closed relativistic system seems
to have been first considered by Pryce?; an illumi-
nating modern discussion has been given by Fleming.*
The result of these investigations is that there are
three generalizations of interest, which Fleming calls
the centers of mass, inertia, and spin. We denote these
by Q.m.> Q.i. and Q. , respectively. These three

26 M. H. L. Pryce, Ref. 25.
27 G. N. Fleming, Phys. Rev. 137, B188 (1965).
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generalizations can be expressed as:

Qenm. = H—I(K + P1), (443)
Qe = Qem. — [H(H® — PYI7P x (P x K + JH),
(44b)
Px(Px K+ JH)
H(H — POYH + (1 — PO}
(44¢)

The generator K can be expressed in terms of any one
of these and the other generators as:

Qc.s. = QcAm. -

K = HQem. — Pt (45a)
e o (= QuxP)xP
K= HQe..i. Pt H(H2 ~ P2) N (45b)
(J— Qe xP)xP
K=H .8, P - . 45
Q t H+(H2-——P2)% (45c¢)

We note that all three of these are equal if the internal
angular momentum S is zero where S is defined, for
any of the three Q’s, as

S=J-QxP (46)

The three are also all equal in the center-of-momentum
frame (defined by P = 0). It is clear from (44) that all
three of the Q’s move with the constant velocity P/H.
The transformation properties of these three Q’s
follow from their definition (44) and the Poisson
bracket relations (37). By using these (and the fact
that K is conserved, which implies dK/dt = —[K, H]
= —P), one can show that the center of inertia Q,,
transforms like a physical coordinate—i.e., it satisfies
the conditions (41), and is in fact the only solution of
{41) which reduces to Q,,, in the center-of-momen-
tum frame. However, [Q,;, Q.;]# 0 if S # 0, so
that Q,; cannot be canonical. Also, it follows from
(44) and (37) that the components of the center of spin
do have vanishing Poisson brackets [although Q,,
does not satisfy (41)]:

[QC.S‘ 3 QC.S.] = O.

The center of mass Q,, satisfies neither (41) nor (47)
and will not be considered further.

Having summarized the relevant results of Pryce
and Fleming, we now proceed to show that P and the
center of spin Q,, can be chosen to be one of the
canonical pairs obtained by solving Pfaff’s problem,
if the Q in (40) is chosen to be the center of inertia
Q,; . To begin with, we have (37a) and (47); it can
be easily shown from (37) and (44) that [Q,, ,P]= 1L
Thus P and Q,, have the correct Poisson brackets
with respect to each other; in addition, we must

7
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satisfy the Clebsch conditions (1la) and (12a) in
order that the remaining canonical coordinates and
momenta can be found. The verification of (12a) for
P is easy; we have

2n n
;Uz" v, Pl = ZUi =P.

In order to compute the left-hand side of (11a) for
Q... , we first use the fact that H, P, J, and K generate
the transformations (32)-(35), respectively, to obtain

[y, A~ (K + P0)] = g;"(h) + 1g7"(R)
ly;, 8- P x (P x K + JH)]
= g;"((P x K + JH) x fi) + g7"(K x (i x P))
+ gl ((AxP)xP) + (J- it x P)h,
+ Hg® (i x P). (48)
By the use of (42), (48), and [y,, H] = h,, it follows
that

2n
2U; -y, fi- (K + Pf)]
=1

2n
=fi-K— ﬁ-Q[UO-i-Zh,.-U,.] + Pt,
i=1
2n
SU;-[y;, 8- P x (P x K + JH)]
i=1

- (2H+ %Ui-hi)ﬁ-(PxJ)+Sﬁ-[Px(PxK)]

+ (vo+ gvh)ﬁ P x(Px QI (49

2n

S U, [y, (H2 — P}

=1

2n
— HH* — Py (z U;-b,— Pg),
i=1

2n 2n
§Ui' ly;, Hl = EUi'hi-

f==1
With the aid of standard vector identities it can be
shown from (44) and (49) that

i=1

&n 2n
2 Ui [y, B Qesl = H_I(Uo +2h,- U,-)

(A + (0 — P YH 4 (1* — P '(@P® — 4 - PP))
+(Q = Qci). (50

Thus Q,, satisfies (11a), if Q = Q; in (40), in
which case P and Q,, can be one of the canonical
pairs obtained by solving Pfaff’s problem.

In order to complete the discussion, we express the
angular momentum J in terms of the canonical
coordinates. We first remark that the fact that the U,
transform as vector functions [see Eq. (43)]implies that
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theT; transform as dyadic functions. From this it fol-
lows that the Poisson brackets [y, y,] reciprocal to the
I';; transform as dyadic functions also; Clebsch’s con-
dition (11a) which reads >, U, [y;,y;]* (9/0y,)Q;, = 0
then implies that (0/0y,;)Q, transforms as a dyadic
function so that the Q, can be chosen to transform
as vector functions, i.e.,

2n
;(yi x 0[0y)Q; = I x Q,. (51)

If one inserts U; = > | [(9/0y,)Q,] - P, which is the
three dimensional version of (5), into (42), and uses
(51), the angular momentum J takes the form

J=3Q.xP,.
k

From (52) it follows that the internal angular momen-
tum S, =J — Q. x P depends only on internal
coordinates if Q,, and P are taken as a canonical
pair. Furthermore, [Q., ,(H2— PO =0 follows
immediately from [Q,, , H] = P/Hand [Q,, ,P] = I.
Also [P, (H? — P?)}] = 0, hence, (H2 — P2}, which
is the energy in the center-of-momentum frame,
depends only on internal coordinates. The separation
into external and internal motions is not as complete
as it is nonrelativistically, however, because internal
coordinates and momenta are not in general invariant
under Lorentz transformation as they are under
Galilean transformation nonrelativistically. If we use
the form (45¢) for K, we find, for an internal co-
ordinate §;,, ,

[Qint > i + K] = Gipe{fi - Q.
+ [H + (H? — P} Y(H2 ~ Py - (S, x P)}
+ [H + (H? — P g (P - B) — f(gyp, * P)]

(52)

which will not vanish in general; the same is true of
internal momenta.

The forms (45¢) and (52) arrived at for K and J are
in agreement with the result arrived at by Foldy.?
The difference between the present work and that of
Foldy is that here all physical coordinates and velocities
transform properly; the connection between physical
and canonical variables is fixed by the way in which
the Hamiltonian formulation has been obtained,
rather than by a postulate as in his work.

Y. EXAMPLES

Before proceeding further with general consider-
ations, it seems worthwhile to consider several
concrete examples. We begin this section by summa-

28 1., L. Foldy, Phys. Rev. 122, 275 (1961).
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rizing the traditional canonical formalism for rela-
tivistic free particles. The second example consists of
a pair of second-order differential equations whose
invariance group consists of the general linear
transformations; we interpret these as a description
of two one-dimensional particles interacting in a
relativistically invariant manner and proceed to find
all of the various ways of casting this dynamics into
Hamiltonian form with the transformations of the
inhomogeneous Lorentz group canonical. The section
concludes with another one-dimensional, two-particle
example which, although relativistically invariant,
does not admit an Hamiltonian formulation with the
entire inhomogeneous Lorentz group canonical.

A. Free Particles

The set of ten generators conventionally used®-28.2
for relativistic free particles are:

3

H

L

Z (2% + mdt,

i=1

w

i
Ms T
z

1]
—

(53)

o~
i
'MS

Il
-

ixpi’

[P+ m3t — pal,

=
]
Ms

where X, , p, are canonical mates. Here x; is the physical
position; the mechanical momentum p; is related to
the physical velocity v, by

p, = my(l — o3t (54)
By comparing Hamilton’s principle
f(Zp, - dx;, —Hdt) =
with (2), we see that
U, =my(l =), U,,=0, i=1,2-,n
(55)
The equations of motion are
hi=vis hi+zz=0’ i=1,2,"',”. (56)

It can be easily verified that the generators (53) satisfy
the Poisson bracket relations (37), and generate the
transformations (32-35) of the positions and velocities.

B. A One-Dimensional Example Exhibiting Interaction

A very interesting example of a one-dimensional,
two-particle Lorentz invariant dynamics, for which

29 Qur K differs from that of Ref. 5 by —Pr (see Ref. 25).
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the equations of motion are

—a; = ay = (v, — 02)*2(x; — X»), (57

has been given by Kerner.!? The solutions of (57) are
easily found to be

x,=A + Bt + (|Ct + D))},

(58)
x,= A+ Bt — (|Ct + D))}

In obtaining (58), a principal value prescription has
been used to integrate through the singularity at
X; — Xg; this gives rise to the absolute value inside the
square root. The solutions (58) are parabolas in the
x — t plane. It follows from the fact that an arbitrary
nonsingular linear transformation

X=a+bx+ct, ' =d+ex+fi,
ec — bf # 0]

carries parabolas into parabolas that the differential
equations (57) have the general linear group on x and
t (of which the inhomogeneous Lorentz group is a
subgroup) as invariance group.

The behavior of the integration constants 4, B, C,
and D under the (finite) transformations of the
inhomogeneous Lorentz group can be found by
conducting the transformation on the solution (58)
and re-arranging the result in the form of Eq. (58).
In this way we find that, under the time translation
t—>t =1t —t,,

[i.e.,

A— A" = A+ Bt,,

B B’ = B,

C—>C =C(, (59)
D— D =D+ Ct,.

Under the space translation x — x" = x + X,

A—>A"= A+ x,,

B— B =B,

C—~C'=¢(, (60)
D— D = D.

Under the Lorentz transformation,
x—>x = (x — Al — p2)3,

(=1 = (= B0 =
[where each of the two orbits must be transformed
separately and rewritten in the form (58)] one finds:
A— A" = (1= (1 + $B)[4 — }BC(1 + pB)],
B— B = (B+ )l + pB),
C—C' = (1- %1 + BBYC,
D—D =(1-— 1+ BB)2[D— FAC(l + BB)L

+ i8°C*(1 + B)7*]. (61)
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The integration constants B and C provide the two
first integrals

B =131, + 1y, C=134v;—v)(x;— Xx3), (62)

as can be easily verified from (58). The integration
constants 4 and D provide the two second integrals

A = §(x; + x2) — 50y + vy,
D = 3(x; — xp)% — (v, — v2)(xy — X)L

(63)

A considerable amount of labor can be saved in the
task of casting Eq. (57) into Hamiltonian form if the
integrals H, P, and K, which are necessarily functions
of the integrals 4, B, C, and D of Eqs. (62) and (63),
can be found ahead of time. If these are known,
Eq. (20) provides algebraic equations for the I';
which are more easily solved than the differential
equations (22). Since H and P are both first integrals,
invariant under both space and time translation, they
must be functions of the first integrals B and C.
Furthermore, H and P must transform among
themselves as a two-vector under pure Lorentz
transformation. We note from (61) that B transforms
like a velocity while C(1 — B?)~% is invariant under
pure Lorentz transformation. Hence, the most
general possibility is

H= (1 — B)te(c( — By,
P=B(1 - By ig(ct — BY ), (64)

where ¢ is an arbitrary function of the indicated
invariant. Under the time translation, t — ' = t — f,,
K— K'= K+ Pt,. Under the space translation,
x—>x"=x+ x4, K— K' = K + Hx,. The conserved
quantity ¢(3C(1 — B 3)(1 — B®%4 has this be-
havior under space and time translation, but is not
invariant under Lorentz transformation, as K must be.
This can be fixed up by adding on an appropriate
function of B and C; hence,

K= [A(1 — By} + 3BC(1 — B2 Y]
x g(C(L = B + y(iC( — BY D), (69)

where ¢ is as in (64), and v is a second arbitrary
function. K must be independent of D if it is to
transform properly under space and time translations;
hence Eq. (65) is the most general possibility for K
compatible with Eq. (64). If we interpret one of the
quantities in a Poisson bracket as the object being
transformed and the other as the generator of the
transformation, it is clear that H, P, and K of Eqgs.
(64) and (65) satisfy the Poisson bracket relations

[H,Pl=0, [H,K]=—P, [P,Kl= —H, (66)

to which (37) reduces in the one-dimensional case.
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The computations can be further simplified by
using sum and difference variables. Thus we choose
N = l(xl + x9), Yo = 3(x; — xp),

=30 + v2), ya= v — ). (67)

With these choices, the A, for this example are

ho = 1,
h3 = 0’
The g, appropriate to the y; of (67) will be half the sum
(or difference) of the g, of Sec. IV. Thus, for example,

application of (35) yields for the Lorentz transforma-
tion

Yo =1,

by =y, hy =y,

(68
and hy = —yi/y,. )

I = 3x: — O + (0x2 — O] = p1ys+ Ye¥a — Vo
The other g; are computed similarly; therefore

g =—1, g"=0, i#0;

T=1, gT=0, i#1l;

2" =0, g" =y + YoV — Yoo (69)
g7 =yys+ y1ys 8 = —1+y;, and

gs" = 2y3y4 — (11yilyo).

The generators H, P, and K of Eqs. (64) and (65) can
also be rewritten in terms of the y, specified in (67);
using (62) and (63) we obtain

H=(1 -y (),

P = y(1 — ) te(2),

K = Hy, + (1 — y)ysz + Hp(2)] — Pyo.
Here z = y,y,(1 — y2)~ % If we now elect to restrict
ourselves to sets of U, for which translational invari-
ance is manifest, i.e., for which 9U, /9y, = 0U,/dy, =0,
we have

(70)

Uy=—H and U, =P. (71)

From these we have immediately seven of the ten I',;;
thus,
Py = —Ty = —0H|dy,,
I'y; = =Ty = 0P[0y;,.

The relations (72) could also be obtained from (20)
when written out for the space and time translations,
using the gTT and g®T of (69). The remaining three I'
can be obtained by writing out the conditions of Eq.
(4) and the conditions of Eq. (20) for the Lorentz
transformations; these take the form

(72)

Fo;; + ySFIJ + .V4 25 (y4/y2)F47 = 0 (73)
Ywys + yeya— YO)FU + (yoys + yiydls;
+ (=1 + YTy, + Rysys — (yyily)ITyy
= 0K/[dy;. (74)

1769

For j =0, 1, these are consistent with Eq. (72). For
j =2, 3, 4, they provide six equations for the three
remaining I';;. Of these six, only three are linearly

‘independent; the solutions for the remaining T';; are

Tag = yays(1 — 92 + y3y4(1 — ) 7%¢'(2)
+ yovu(l — ¥ Yo + yi1 — yit
Tay = yoyi'(1 — )7 '9'(2),
Iy = )’2)’3}’41(1 - Y:;)—z[l - .V3J’4(1 - }’3)_2]‘P ()
— yaro(l — ¥ e(2) — 3ol — Wy ().
(75)

v'(2),

In one dimension there is no angular momentum;
hence, the centers of mass, inertia, and spin are
identical and may be identified from (70):

Q =y + (1 — ¥z + W@)/e@).  (76)

The T';; of (72) and (75) satisfy the integrability
conditions (21); hence, (75) can be integrated to
obtain U,, Uy, and U,. A particular solution is

Uy = $y2'zly5 + y2°(1 — »9)’19(2),
Us = dyy(1 — y97'z[y5 — y2°(1 — y3)’le(2) an
~ (1 =y 'p(2),

'zl — ya’(1 — y3Ple(2).

The U, of Eq. (77) have been adjusted (by the addi-
tion of a gradient) to make the action invariant (in the
sense of Sec. III) under the modified Lorentz trans-
formation given by (38) and (40); hence the P of
Eq. (70) and the Q of Eq. (76) can be one of the
canonical pairs obtained by solving Pfaff’s problem
with these U,.

The inversion of the matrix I';; (i, j # 0) to get the
Poisson brackets [y,, y;] is made easier by the fact
that the determinant of an antisymmetric matrix is a
perfect square (it is the square of a Pfaffian3); thus,
detT';; = ®?where @ = — I,y + gl — I'gDas.
The Poisson brackets are then

U4=

[}’1,}’2] - —CD_IFSA! [}’2,)’3] = _(D—IFIAl’

[yl’y3] = q)—‘IPM’ [}’2,}’4] = d)_l]-‘la, (78)
[.yl’.y4] = —(D—ll—‘23’ [y35y4] - _(D_lrlz.
By computation,
O = y.2(1 — y3) 'z(2)¢'(2). (79)

The partial-differential operators which appear in
Eqgs. (11) and (12) can now be computed. For any

30 A, R. Forsyth, Ref. 17, p. 95.
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function F of the y;,

Z Z[y“ y;1U.0F [0y,

g==) j=1
= 10731 — Y (@) PI—rs(l — yDE2(9F/3y,)
+ .Va(aF/a}’z) + Y4(aF/aY4)} + (D_l(l - }3)_
x {ale@F + #(2)v'(2) — ¢'(D)p(2)}

X {“(Y2f))4)(aF/aY1) + il —~ yg)_l

X [yo@F|8yy) — yo(OF [0y}, (80)
aP oF aF
s 8
[F, P] = ,21,2“’“ Rt T
3 o0 oF

S 6 Oy
= 07ty w(”){(zy — Dz + yslp(@)/e(]}
X (OF[3y,) + Oyl — ¥ zg'(2)
x [1— yi1 — 7 — (1 — yd~
X [@'(2)w(2)/ ()}~ y(OF [Oy2)
+ ya@F[3y)] + O (1 — ptzg(2)
X [=3ysy(OF [Bys) + (1 — y)(OF/3y)]. (82)
An internal canonical coordinate g can now be

found by solving (11a) simultaneously with [g, P} =
{g, Q] = 0. A particular solution is

= Jz[ya*(l — 13 — ysl — yalw(@)/p(2)).  (83)

The canonical mate p to the ¢ of (83) is most easily
found from pdg = 3% U, dy; — PdQ; it is

» = 9. (84)

The generators H and K are now expressible in terms
of the canonical variables P, Q, p, g which are related
to the physical positions and velocities by (67), (70),
(76), (83), and (84); from (70) are obtained

H=(p*+ P, K= HQ - P1. (85)

Canonically equivalent formulations are obtainable
by canonical transformations; different choices of the
arbitrary functions ¢ and p give rise to canonically
inequivalent formulations.

C. Another Example Exhibiting Interaction

Another example of a one-dimensional, two-
particle Lorentz invariant dynamics is specified by the
pair of second-order differential equations

ay = (v — v)(1 — v)[ogx; — xz)]d:‘
ay = (v — .1 — v)[or(x; — x)T

Two independent first integrals of Eq. (86) which are

(86)
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invariant under both space and time translations are
given by

= (X; — X0y + v}z — v, (87
B ={x — xo)° (v} + v5 — 20}03) (v, — 0) %
By the use of (35) and (86), it follows that for this
dynamics

Lip = (0% — 033,)(0y — 0)" 3 (D — 8/01)
— [t + viwa(xy — X200y — v2)"M[(8/8x) + (2/0x2)].

Hence, LigA = Li;B =0, ie., both of the first
integrais of (87) are Lorentz invariant,

We now proceed to show that this dynamics cannor
be cast into Hamiltonian form with all of the trans-
formations of the inhomogeneous Lorentz group
canonical. The proof is by contradiction; suppose
such an Hamiltonian formulation exists. Then there
must exist first integrals P and H, invariant under space
and time translations, which form a two-vector under
Lorentz transformation. But there are no integrals of
Eqgs. (86), independent of 4 and B of Eq. (87), which
are invariant under space and time translations,
Hence, P and H must be functions of 4 and B. But,
since 4 and B are both invariant under Lorentz
transformation, no pair of functions of them can
form a two-vector under Lorentz transformation.
Hence, the required P and H do not exist.

The last example of the present section makes it
clear that it is not always possible to cast a Lorentz-
invariant dynamics into Hamiltonian form if it is
required that the transformations of the inhomo-
gencous Lorentz group be canonical. The second
example illustrates the fact that this Hamiltonization
can be done in many ways, if it can be done at all.
This large number of canonically inequivalent Hamil-
tonian formulations presents a problem when one
comes to construct a quantum theory; which
Hamiltonian scheme is to be chosen? Different
choices will lead to different quantum theories®; it is
therefore necessary to resolve this ambiguity before
proceeding to quantization ®

VI, THE ZERO-INTERACTION THEOREM
OF CURRIE JORDAN, AND SUDARSHAN

The zero-interaction theorem of Currie, Jordan,
and Sudarshan®$ has been frequently quoted (some-
times without mention of the crucial assumption of

31 P, Havas, Bull. Am. Phys. Soc. 1, 337(1956); F. J, Kennedy and
E. H. Kerner, Am, J, Phys. 33, 463 (1965).

* An existence and uniqueness theorem which answers this
question for dynamical equations admitting free particle motion
asymptotically has been given by R. N. Hill and E. H. Kerner, Phys.
Rev, Letters 17, 1156 (1966). A fuller discussion of this theorem
appears in R. N. Hill and E. H. Kerner {to be published).
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the identity of physical and canonical coordinates) as
evidence of the impossibility of formulating relativ-
istic dynamics within the framework of the canonical
representations of the inhomogeneous Lorentz group.
Inasmuch as we have formulated just such a dynamics,
it seems worthwhile to re-prove the theorem in a way
which shows clearly just how we have circumvented
its prohibitions. As a byproduct, we are able to
clarify the situation in one and two dimensions,
which was left quite muddy by previous proofs which
were valid only in three dimensions.

We begin with the Poisson bracket rewrite of the
transformations (32) and (35)

[x;, H] = v,,

[v., H] = F,,
[x,,0:K] =v,/(d-x,) — fit,
[v;,i-K]=F,(f-x;) — @2 + v,(f-v)).

(88a)
(88b)
(88¢c)
(88d)

By taking the Poisson bracket of (88c) with x;, one
obtains

[x;, [x;, - K]] = (- x,))[x;,v,] + [x;, x,] - fiv;.  (89)

Interchanging / and j and transposing the dyadics
produces

([x;, f- K], x;} = (- x)[v;, x,] + v, - [x;, x;]. (90)

It follows from (88a), (88b), and the Jacobi identity
that
on

92

[x;, vl = —[v;, x;] + [[x;, x;], H],
[F;, x,) = —1[v;, vi] + [[v;, x,], H].
The addition of Eqgs. (89) and (90) followed by the use
of the Jacobi identity and Eq. (91) produces the
result
i (x; — x)[v;, x,] = (- x)[[x;, x;], H]
= [[x;, x;], & - K] + [x;, x] - fiv, + v,fi - [x;, x;].
(93)

Similarly, by taking the Poisson bracket of (88c) with
v; on the left, the Poisson bracket of (88d) with x; on
the right, adding and using (92) and the Jacobi
identity one obtains

fi- (x; — x)[v;, vi] = (& - x)[lv;, x;}, H]
— [[v;» x,), 8- K] + Fjfi - [x;, x;]
+ [v;, XJ(@ - vy) + [v;, x] - fiv, + v - [v;, x,).
(94)

By taking the Poisson bracket of (88d) with v; and
performing manipulations similar to those which
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produced (93), one obtains
i (x; — x))[F;, v;] = (- x)[[v;, v,], H]
— [[vi, v;], - K] + [v;, x,] - AF; + Fft - [x;, v)]
+ 0. (v, + v)lv,, v;] + [v,, v,] - v, + vl [v, v,
(95)

Nowhere in the derivation of Eqgs. (92)-(95) has the
dimensionality of the space been used; they are
therefore valid in one or two dimensions as well as in
three. They are also quite compatible with interaction;
in particular they hold for the Hamiltonian formula-
tion of example (51) obtained in the preceding
section.

At this point let us make the crucial additional
assumption that the physical coordinate can be
canonical, which means that [x;, x;] = 0. When this
assumption is made, it follows immediately from Eqs.
(92)-(95) that, for i # j,

[x;, x;] =0, (962)
[v,,x,] =0, (96b)
[v,,v.]=0, (96¢)
[F;,x,] =0, (96d)
- [F;,v]=0. (96¢)

By the use of Eq. (8), (96a)-(96c) the results (96d)
and (96e) take the form:

0 =[x, F,] = [x;, X]- = F, + [x;, vl - =~ F,,

axi avi (9 7 )

, F;l = [vi’xi]'iFj + [v:, Vz’]'_a—F;'-

ox; ov,
If we now make the further assumption that the
dynamics is nondegenerate,® so that the positions
and velocities form a complete set of dynamical
variables, the matrix of coefficients in (97) is non-
singular and we have

LR,
0x; ov,

which states that the acceleration of the jth particle is
independent of the positions and velocities of the ith
particle, i.e., they do not interact.

The original proofs of the zero-interaction theorem
adopted straight-line motion of the particles as a
criterion for the absence of interaction. The con-
nection between this criterion and that of (98) can be
obtained by writing out the conditions (17) for the

invariance of the equations of motion dv;/dt = F,

0=y,

i# 7, (98)

3 This somewhat stronger hypothesis was used by Leutwyler
(Ref. 8), but was not used by Currie, Jordan, and Sudarshan
(Refs. 5 and 6) or by Cannon and Jordan (Ref. 7).
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under the Lorentz transformations (35). The conditions
0

read¥
n 0

2vF, + Fyv, + > [(x, - x,-)(vi «.— +F,. —)
i=1 ox, ov,

) 2

2

0
F0—wn)- B =0 09

The only simultaneous solution of (98) and (99) in two
or three dimensions is F; =0, i.e., straight-line
motion. The most general simultaneous solution of
Egs. (98) and (99) in one dimension is F; =
c,(1 — 05)3, where the C; are constants; for C; # 0
this describes a particle moving in a constant external
field (hyperbolic motion). The only other case ad-
mitting curved world lines with the inhomogeneous
Lorentz transformations canonical and [x;,x;] =0
occurs when at least some of the equations are
degenerate; Currie’s one-dimensional example®35 is
of this type.

It should now be clear that the Currie-Jordan-
Sudarshan zero interaction theorem does not prohibit
the formulation of a relativistic dynamics within the
framework of the canonical representations of the
inhomogeneous Lorentz group. Their theorem can in
fact be viewed as a reductio ad absurdum proof of the
fact that the Poisson brackets [x;,x;] cannot all
vanish in the interaction region of such a relativistic
Hamiltonian mechanics. This nonvanishing of [x;, x,]
is, at first sight, somewhat disturbing; because it
would seem to imply that particle positions are not
simultaneously measureable with arbitrary precision
in a quantum theory obtained by the usual Poisson-
bracket-to-commutator prescription. It is the present
author’s contention that such an interpretation of
[x;, x;] # 0 is not valid, because it ignores the
difference between the description of a position
measurement in a local field theory and its description
in an instantaneous interaction theory.

We discuss this difference at the classical level. For
concreteness, let us suppose that the measurement
apparatus consists of a sensitized space-time volume,
such as a Geiger counter, which has spatial extent Ax
and which is sensitized for a time interval Ar as in

3% The condition (99) has been given previously by the author
[Ref. 11, Eq. (83)].

35 A two-parameter family of examples of degenerate (first-order)
dynamics can be obtained by regarding the invariant first integrals
(87) as the specification of a first-order dynamics. Solving these for
v, and v, yields vy = 0(x),)(x$, — 2Bx2, + ADHA + x},)-1, and
vy = 0(x,9) (x4, — 2Bx}, + ADI(A — x},)', where 0(x,5) is either
+1 or —1 and changes sign when the square root becomes zero in
the course of the motion. Currie’s example results from the choice
A = 0, B= —}e; all of these degenerate examples can be obtained
from a Hamiltonian scheme such as that used by Currie (generators
P =p; + ps, H=pyv; + pavy, and K = p,v,%1 + pavsx,, where p;
and the physical coordinate x; are canonical mates).

ROBERT NYDEN HILL

b AX
| |
o7
90 IXi
o
¥ X
—
-
> X

/

F1G. 3. Measurement of a particle’s position.

Fig. 3. As a particle (world line 1 in Fig. 3) passes
through the sensitized space-time volume, it in general
suffers a perturbation which causes an alteration in
its world line. In a local field theory which employs
the usual notion of Einstein causality, this pertur-
bation does noteffect achangein the motion of asecond
particle (world line 2 in Fig. 3) until sufficient time
has elapsed for a light signal to propagate from the
first particle to the second (to the world point R, in
Fig. 3).

In a conventional field theory, the measurement
interaction with the sensitized space-time volume is
purely local, and involves only the position (and
possibly velocity) of the particle inside the volume (at
the world point Q in Fig. 3). The description of a
position measurement by such a local interaction is,
however, incompatible with an instantaneous action-
at-a-distance description of interparticle interaction
because the world point at which the second particle’s
motion is first perturbed becomes frame-dependent.
Thus, a local perturbation at Q on the first particle’s
world line would effect the second particle at R if the
computation is performed in the unprimed frame and
at R’ if the computation is performed in the primed
frame. The conclusion we draw is that the local
measurement interaction must be supplemented by a
nonlocal interaction with the second particle which
compensates for the instantaneous transmission of

36 The fact that local external interactions are incompatible with
instantaneous interparticle interactions has been recognized by
many authors. Various interpretations of this fact have been made
by different authors; thus Thomas (Ref. 4) concluded that non-
invariant world lines must be employed while Currie (Ref. 6)
concluded that external interaction is incompatible with an instan-
taneous interaction formalism.
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the local perturbation in such a way that all observers
predict the same alteration in the second particle’s
motion. A determination of the form of the required
nonlocal compensating interaction must await a
detailed investigation of the extension of the instan-
taneous interparticle interaction scheme to include a
description of external interactions.” If this extension
should turn out to be nonunique, questions about
measurements made while the particles are interacting
might well be unanswerable in the sense that the
answers depend on the way the extension is made.

The necessarily nonlocal character of position
measurements in an instantaneous interaction theory
then raises the following question with respect to the
simultaneous measurability (with arbitrary precision)
of positions in the corresponding quantum theory;
are the operators whose commutation properties
determine whether or not simultaneous position
measurements interfere with one another the quantum-
mechanical counterparts of the classical positions x;,
or the necessarily nonlocal operators involved in the
description of the measurement act itself? It is the
present author’s belief that [x;, x;] # 0 should not be
interpreted as implying an interference between
simultaneous position measurements in an instan-
taneous interaction quantum theory; it is the com-
mutation properties of the operators involved in the
description of the (possibly idealized) measurement
interaction which must be looked at in answering this
question.

VII. SUMMARY

A relativistic Hamiltonian mechanics has been
formulated by beginning at a Newtonian level with
an instantaneous action-at-a-distance relativistic me-
chanics formulated as a system of second-order differ-
ential equations in the physical coordinates. The
Hamiltonian scheme was obtained by finding a
variational principle on the positions and velocities
which was reduced to Hamilton’s principle by solving
Pfaff’s problem. An investigation of the invariance

37 We expect that such an extension should be possible by virtue
of the fact that a theory all of whose predicted motions are to be
calculated by perturbingabout thesecond-orderdifferential equations

describing free particles is equivalent to a description of these
motions by second-order differential equations.
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transformations of the dynamics led naturally to the
identification of a normal subgroup ¥ of transforma-
tions which left individual physical states unchanged.
The factor group of transformations modulo ¥ was
seen to be isomorphic with the subgroup of trans-
formations which left the time fixed; from this we
concluded that it was sufficient to consider only
transformations which leave the time fixed despite the
fact that time is not absolute in special relativity.

We have seen in terms of specific examples that an
Hamiltonian scheme with the transformations of the
inhomogeneous Lorentz group canonical is not
always possible for a Lorentz invariant particle
dynamics, and that many canonically inequivalent
schemes are possible, if one is possible. The fact that
canonically inequivalent schemes lead to inequivalent
quantum theories then raises the question of which
scheme to use as a suitable basis for formulating a
quantum theory. This question has been answered
previously®? for dynamical equations which admit
free particle motion asymptotically.

A new proof of the Currie-Jordan-Sudarshan
zero-interaction theorem which highlights the im-
portance of the assumption that physical coordinates
can be canonical has been constructed; we have
suggested that their theorem may be appropriately
regarded as a reductio ad absurdum proof of the fact
that [x;, x;] # O in the interaction region of a relativ-
istic Hamiltonian dynamics. It has been pointed out
that [x;,x;] # 0 does not necessarily imply an
interference between simultaneous position measure-
ments in a quantum theory corresponding to the
present classical theory because such an inter-
pretation neglects the necessarily nonlocal character
of an external measurement interaction in a relativistic
theory with instantaneous interparticle interactions.
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A function f(r ) Y¥(0.s, pas) Of a vector rz = Zr; can be expanded in spherical harmonics
Y0, ¢) of the directions of the individual vectors. The radial coefficients satisfy simple differential
equations which, in three previous papers, were solved in terms of series in r¥/r}; these were different in
various regions, depending on the relative magnitudes of the r;. In this paper the solutions are found as
multiple integrals over the product of Legendre polynomials and of a function G(w), where w depends
linearly on the r;. The kernel G(w) is independent of the number of constituent vectors, their relative
sizes, and the orders of their harmonics; it contains the Heaviside step function H(w) as a factor which
takes care of the various regions. The precise form of G can be found from f and L by an integral
equation which for L = 0, 1 is solved for arbitrary f, and for L > 1 for sufficiently large positive powers.
The expressions of Milleur, Twerdochlib, and Hirschfelder for the bipolar angle average can be obtained
simply by repeated integration of G(w) or directly from the differential equations. For the inverse
distance between two points, G(w) becomes Dirac’s delta function; the number of integrations is thereby
reduced by one. Possible applications of the new approach to the evaluation of molecular many-center
integrals are outlined. Some corrections are given for the results of the previous papers in the series.

SEPTEMBER 1967

I. INTRODUCTION

N a series of three papers? the writer has presented
a number of expansions for a function of the dis-
tance r;, between two points @, and Q,, which are
specified by r; (1, 61, ¢;) and r, (ry, 63, @2) about
a common origin O or two distinct origins 0, and O,;
the directions of the polar axes and of the planes
defining @ = 0 are parallel throughout (cf. Fig. 1).
The dependence on each angle, including 63 and ¢,
where 13 (ry = a, 03, @g) is the vector 0,0, is given
by surface spherical harmonics, expressed either in
their unnormalized forms

QP(6, 9) = ¢™*P}"(cos 0) (1a)

or normalized forms

m _ [@l+ DU —m!
YR, 9) = [ poe i

where the associated Legendre functions P(u) are
defined by the standard Rodrigues formula:

b
]éwwmwxum

2m du
The expansion for a function
V=f@p) =ft1+r24+ - +r)

* This work was supported in part by National Aeronautics and
Space Administration Grant NsG-275-62.

+ Permanent address.

1 R. A. Sack, J. Math. Phys. 5, 246, 252, 260 (1964). (Though
these papers do not carry the same global title, they are to be con-
sidered as Parts I, II, and III of the present series and hereafter are
referred to as such.)

. 2ym/2 Lm
PP(u) = (—)'”“—i)——(i) @ =1 (o)

(22)

and, more particularly, for an isotropic function

V=fp)=f(n+rn+ - +r))
can always be written as®

v=z[ﬁ ::'f(e.-,qo»] RELmT. ()

Im { ;=1

(2b)

Here the vectors 1, m, and r denote the sets of » values
l;, m;, and r,, respectively; they are not geometric
vectors in the three-dimensional space such as ryp.
The summation in (3) in general is to be taken over
each /; from O to oo and each m, from —/; to ;. The
only cases hitherto considered in detail have been
v =2 and v = 3, which are relevant for the one-
center and two-center expansions, respectively.

The basis of the theory developed in I-III was
that, since V' depends on each x; only through the
linear combination Y x;, the derivatives d/0x, are the
same for all i and, correspondingly, for d/dy; and
0/0z, . In particular,

VI = ViV = - .- V¥V, 4
which, when substituted in (3), yields for each indi-
vidual R(l, m; r)

(8%/or? + (2/rydfor — I(l; + 1)/r)R = invariant
i=1L2-9. (5
By solving (5) together with the appropriate boundary
conditions for

V= r}{VB and V= r:IYBQiW( oABs (PAB)’ (6a9 b)

% The change of r, inr.5 to —r, in ry, simply introduces a factor
+1 in the terms in (3) depending on the parity of /.
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FiG. 1. Polar coordinates for two-center expansion. The angles
@; are not shown to avoid cluttering up the diagram.

the writer was able to derive explicit expressions for
R in terms of hypergeometric functions (Appell
functions for » = 3)®; some of the one-center expan-
sions for isotropic ¥ had already been found by
Chapman' using a different approach. The explicit
forms of the radial functions differ according to the
relative sizes of the r;; for ¥ = 2 there are two regions

Syiry >y, Seiry >y (7a)

for v = 3 there are four regions as first shown by
Buehler and Hirschfelder®:

St >ry4ry; Ssirs>r 4oy

Seira>ri4ry; Sptln—rl<ry<ri+r,

(see Fig. 2). Whereas in the case (6a) the series
expressions for R are convergent and reasonably
simple in the outer regions S;, S;, and S5, the corre-
sponding series in the overlap region S, are, in general,
divergent, and the only explicit series obtained in
LIl were for integer N = —1,0,1,2- - ; even these
were not likely to be of great practical use, e.g., for
numerical integrations for large /,, because of the
partial cancellation of large terms with a small alge-
braic sum. In the one-center expansion of isotropic
functions of the type (2b), quadratic transformations
applied to the hypergeometric functions, in I, led to
expressions for R which were symmetric in r; and r,;
some of these had already been derived by Chapman?
and by Fontana,® but the appearance of powers of
(r1 + ry) or (r+ r3) in the denominator seems to
preclude their usefulness for most practical purposes.
Fontana® has also outlined an approach to an anal-
ogous symmetric two-center expansion, but, for

(7b)

3 Bateman Manuscript Project, Higher Transcendental Functions,
A. Erdélyi, Ed. (McGraw-Hill Book Company, Inc., New York,
1953), Chaps. 2 and §.

# 8. Chapman, Quart. J. Pure Appl. Math. 85, 16 (1914).

® R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628 (1951);
85, 149 (1952).

¢ P. R. Fontana, J. Math. Phys. 2, 825 (1961).
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v a n
(a) (b)

FiG. 2. The various regions: a. The one-center case. b. The two-
center case.

reasons to be given in a later paper, these expansions
would not be absolutely convergent everywhere, quite
apart from the complicated analytic form they would
take.

A rather different approach to the two-center ex-
pansion has been taken independently by Nozawa’
and by Chiu.® These authors are essentially concerned
with the solution of the Laplace or the wave equations
V2V = +k*V or 0, but their method can be directly
applied to any function V. They first break up the
vector Iy, into ry and r, where r, = 0,0, (cf. Fig. 1)
and employ the usual one-center expansion, and then
similarly re-expand the dependence on r; in terms of
rpand ry. As a result they obtain different expressions
for R in three regions only:

Siir >y
Syiry <1y, Fy > 1y ®)
Sairy <y, ry>r,

(there is no subdivision of S;). The regions S, S,,
and S; of (7b) are completely contained in their
primed counterparts and the expressions obtained are
obviously pairwise identical, and, in addition, the over-
lap region S, is split up between the three regions of
(8). But as the magnitude of r, depends on the angle
gy between r, and ry, the boundary between S; on
the one hand and S, or S, on the other depends on
0y, @2, 63, and @g; and in the expansion (3) the
variables are no longer strictly separated, as the radial
coefficients R involve the angles. In consequence, it is
no longer possible to use the orthogonality relations
for the surface harmonics to carry out the integration
over the angles. And any attempt to extend the validity
of the expressions for the outer regions into S, in such
a way that the boundaries are independent of the
angles, e.g., by using the formulas for S; whenever r;

? R. Nozawa, Busseiron-Kenkyu 78, 35, 75 (1954): J. Math. Phys.
7, 1841 (1966).
8Y. N. Chiu, J. Math. Phys. 5, 283 (1964).
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is the largest of the three vectors, will make the ex-
pansion (3) diverge, as was already implicit in the
work of Carlson and Rushbrooke® on rij'; though
these authors avoid any explicit mention of the overlap
region, they specify regions in which the other for-
mulas converge, and these exclude S,. If additional
factors multiplying V enforce convergence after inte-
gration over angles, the results obtained in S, from
formulas valid in S; are likely to be erroneous. For
these reasons the writer considers any expansion of
the form (3) which ignores the distinct form of the
radial coefficient R in S,; while not necessarily in-
correct, at any rate, it is not very useful for most
practical purposes.

Recently a new approach to the two-center expan-
sion has been made by Milleur, Twerdochlib, and
Hirschfelder.’® For an isotropic function f{r;;) they
obtained simple expressions for the angle average
(f) = R(f; 0,0; r) by explicit integration over angles.
The results involve the r; only as linear combinations
(£r, + ry £ r3), and the functions appearing are
obtained from f by integration so that the method is
applicable to fractional powers and to piecewise con-
tinuous functions to which the series expansions for
R derived in III cannot be applied. Two questions
posed themselves immediately:

(a) Could the closed form expressions for the angle
average be obtained more simply as solutions of the
differential equations (5) with the appropriate bound-
ary conditions?

(b) Could the general solution of the equations (5)
with arbitrary /; be given in a form which preserved
the linearity in the r;?

Both these problems were quickly resolved, and the
new derivations are presented in Secs. 2 and 3, respec-
tively. It was too much to expect closed expressions

for the solutions of (b); hence attempts in this direc--

tion were quickly abandoned. Instead, solutions were
successfully sought in terms of an integral over a
function G(w) where w is a linear function of the r;.
This function was found to be independent of the /;
and of the regions .S;; its exact form is determined
by a Volterra-type integral equation involving V(r)
and the Heaviside unit step function

Hw) =1,
H(w) =0,

w>0,

w <0, ®

the derivative of which is Dirac’s delta function 6(w).
The explicit solution of this equation was obtained for

?B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil.
Soc. 46, 215 (1950).

10 M. B. Milleur, M. Twerdochlib, and J. O. Hirschfelder, J. Chem.
Phys. 48, 13 (1966).
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functions V given by (2b) or (6b)—in the latter case
only for sufficiently large N.

The intervention of the factor H(w) automatically
takes care of the different analytic forms of the
integrals in the various regions; its influence on the
solution and special forms of the results are discussed
in Sec. 4, and in Sec. 5 some applications of the new
approach for the evaluation of 2-, 3-, and 4-center
integrals are outlined.

II. THE ANGLE AVERAGE

The formula derived by Milleur, Twerdochlib, and
Hirschfelder'® for the angle average (f), i.e., for the
radial coefficient R(0,0;r), of a spherically sym-
metric function f(r45) or f(ry;) with two origins is

In §p: <f> = (4ryrara) HA(ry + 12 + 13)
— h(ry+ry —rg) — h(ry —ry +r3)
— h(ry — ry + ry)l, (102)

In S;: (f) = (@ryrers) HA(ry + 1o+ 13)
—h(ry+ry —r3) — h(ry, — ry +r3)

+ h(ry — ry — r3)l, (10b)
where

h(w) =j v(w — v)f(v) dv. (11
0
The expressions valid in S, and S; are obtained from
(10b) by permutation of the indices. Substitution of
this integral in (10) shows that the lower limit of
integration is immaterial in S;, though not in S;; in
consequence a singularity of f(ry,) at r;, = 0 will not
show up in (/) in the outer regions, but may crucially
affect the result in the overlap region. Thus, for
Sf(ri2) = rf), (10b) remains meaningful for all N,
provided the lower limit in (11) is taken to be € > 0;
on the other hand, convergence of the individual
terms in (10a) requires N > —3. The formulas (10)
and (11) have a well-defined meaning for any function
f(ry2) which is integrable for all nonnegative ry,; no
analyticity of f need be assumed, as was required in III.
The expressions (10) and (11) were obtained by
Milleur, Twerdochlib, and Hirschfelder'® by integra-
tions over the geometric angles. To derive the same
results as solutions of differential equations, we must
put all the /; equal to zero in (5). Consider first the
one-center case » = 2 and put

T = rirs(f). (12)
For this function (5) becomes
0°T|or: = 9°T|or}, (13)

which is d’Alembert’s equation with the well-known
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general solution
T = gy(r1+ ra) + galrs — ra).
Hence (f) must be of the form
(f) = (rra) 7 [ga(ry + r2) + ga(ry — r2)]. (14b)
However, as r, tends to zero in the region S;, (f)
tends to f(r;); hence, by L’Hopital’s rule,

(14a)

g1(’1) = "‘gz(rl) = %g(rl), (15a)
rit dg(ry)dr, = f(r), (15b)

or
g(w) = f “of () do, (16)

although again the lower limit of integration is essen-
tially arbitrary. The angle average is thus
InS§;:(f) = [glr1 + ra) — g(ry — r)IQ2ryre)7,  (172)
In S,:(f) = [glry + r2) — g(ry — r)12ryrs)t, (17b)
with g(w) defined in (16); the second formula follows
from the first by symmetry. For the two-center case
(v = 3) we put
T = rirars(f), (18)

for which (5) becomes

0°T|0r? = 0*T[or = 0°T|or}. (19)

Considering the three sides of this equation in pairs,
we see that each r; is coupled to the others by addition
or subtraction, as in (14a); hence (f) is of the form
<f> = (ryrarg) [y(ry + ra + r3) + ha(ry + 1y — 1)
+ ha(ry — re + rg) + hy(ry — re — rg)l. (20)
As rg tends to zero in S, (20) must tend to (17a), and
a renewed application of L’Hoépital’s rule yields the
solution (11) and (10b). The formulas valid in S, and
S; follow from symmetry, and (10a) can be deduced
as the only function of the form (20) which smoothly
links the known solutions in the outer regions.
Both (16), (17) and (10), (11) can be written in a
form independent of the region in which they apply
by making use of the Heaviside function H(w):

(f)=Qrr)™" g (=) %g(0yry + 0ary)
X H(oyry + 0515); (21a)
(f) = (4ryryry) ™" Z (=)ot T (G ry 4 OaFy + O3y)
X H(ory + 0o 4 03r3), (21b)

where each o, can take the values 3-1 independently.
The step function thus takes care of the various
regions by eliminating terms of negative argument;
there should be no ambiguity on the boundaries of
the regions as long as g(0) or A4(0) vanish, i.e., as long
as vf(v) (or its integral) is integrable at v = 0.

The generalization of (10), (11) for the angle
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average of a function f(r,z), where r 5 is composed
of an arbitrary number » of vectors [cf. (2b)], follows
easily by induction:

R(O,055) = 2(nr)™ 3 (=), (; a,ir,«), (222)

where
(W) = wWHMW); g,(w) = f “gva(v) dv. (22b)

II1. INTEGRAL SOLUTIONS FOR ARBITRARY /;
A. General Form of the Solutions

The differential equations (5) for the radial coeffi-
cients R do notinvolve the azimuthal quantum numbers
m;, which can, therefore, affect the solution only in the
form of a constant factor; hence the functions R can
always be decomposed into two factors, one depending
on1and m only, the other on1and r as well as on the
nature of the functions V' to be expanded:

R(V;L,m;r)=K'(I,m) x R"(V;1;r). (23)
As already pointed out in II and 111, this partitioning
is not unique, as any dependence on the 1 only may
be drawn into either factor.

As mentioned in the introduction, the chief aim of
the present investigation was to establish solutions of
(5) involving the r; only in linear combinations, i.e.,
in the form

G(Ow) = G(ryuy + raus + ++ -+ ru,) (24)
summed or integrated over various values of u,. As
the solution was bound to involve the rotational

quantum numbers /; in some way, the most obvious
trial solution was

1 1
R"(l, 1) =f 1-- J- 1du1 duy - - - du,
X GW)P ()P (up) - - - Py (u,). (25)

Assuming that G(w) has a second derivative every-
where and applying the r, operator of (5) to the first
integral in (25) only, we obtain

* 29 L+ D\ [*
(o™ o ) Lo
! 2 et 2uqy .,
=f [ulc ) + 21 G'(w)
-1 ry
L+ D)

. G(w):‘ Py (uy) dusy,

=fl G"(W)P, (uy) du,

+f1 [i (u3 — DG'(w)
-1} du, r

_ Ll + 1)G(w)

ry

]le(ul) duy, (26)
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where the last integral vanishes on integration by
parts. The r, operator in (5) applied to the trial func-
tion R" of (25) yields thus a similar »-fold integral,
with G”(w) replacing G(w); the resulting expression
is thus invariant whichever particular operator in (5)
is chosen, and (25) is indeed a solution of (5). The
general nature of G makes it likely that (25) represents
the general solution of (5) except, possibly, for some
singular solutions. Although for the purposes of the
proof it has been assumed that G(w) possesses second
derivatives everywhere, this is not a necessary con-
dition, as even a discontinuous G(w) can be treated as
the limit of a sequence of functions with second
derivatives.

Having thus established the general nature of the
solution of (5), we next have to show that, for the
expansion of a function

|4 =f("‘11;)9}11(0‘413 s Pan)

[which includes (2b) as a special case] with a suitable
choice of the factor K", the function G(w) is independ-
ent of the number of component vectors » and the
rotational quantum numbers /;. Once this has been
established, it remains to determine the dependence
of G on fand L.

(27)

B. Invariance of G

The transformation properties of the spherical
harmonics Q" or Y} of (1) under rotation require
that the coefficients of each individual term in (3)
involve the azimuthal quantum numbers m only
through the integrals (generalized Gaunt’s coefficients)

I ( Lo
m; My
or

I l Iy -+ ls)
Y(ml n, ot My

T r2r s
- f TT Y0, ¢) - sin 0 d0 dg. (29)
0 Jo 1

. 1«
’) _ f TI P1(u) - du (28)
ceeomy 1

The latter integrals vanish unless

Sm, =0, (30a)
1
i [; = even = 2A, (30b)
1

A=1,>0 (j=1,2---5). (30¢)

Here (30b) follows from parity considerations and
(30a) and (30c) from the orthogonality relations of the
spherical harmonics. The integrals /;, in (28) do not
necessarily vanish if (30a) is violated; but as the only
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integrals of importance are those for which (30a) is
valid, we assume the relation must hold. In view of the
writer’s personal preference for unnormalized har-
monics, the derivation will be given in terms of these
functions; some of the formulas required in this sec-
tion are derived in Appendix A, as their presentation
here would interrupt the flow of the argument.

If in the expansion of (27) we put for the m-depend-
ent coefficient K” of R [cf. (3) and (23)]

K'(Lm) = (—)M r1[ (I + 1)

L l I')
X IQ<M 1 2

") e
—m; —m, —m,
the I, is a consequence of the transformation proper-
ties, the additional factors have been chosen for
convenience. To show that with this choice of K”
the function G'(w) in (24) and (25) is indeed independ-
ent of » and 1, we note that, by making r, = 0, the only
dependence of the integrand of (25) on u, is through
the Legendre polynomial; hence by orthogonality all
the integrals (25) vanish, unless /, = 0, in which
case the integral is just twice that obtained with r, and
u, missing; at the same time, (31) has exactly half the
value it would have in the absence of /, + }. Hence
for the expansion (3) to be invariant under the addi-
tion of an arbitrary number of zero vectors, G(w)
must be invariant under the accretion or deletion of
an arbitrary number of u; terms with /; = 0.
More generally, we can show that the invariance of
G in (25) ensures the identity of the expansion (3)
whether we take two radii (say r; and r,) in the same
direction or take a single vector of magnituder, + r,.
Collecting only those factors in (3), (25), and (31)
which depend on (0,, ¢,) = (9,, ¢5), I, and /, and
summing over these, we obtain, in the one case, the
contribution

Jy =IZ 2

pmy lemg

f f o, PQP(0, )
l, L, - I, )
—m, —my o —m,

x Py ()P (u)G(ryuy + rotty 4 -+ <y duy du,, (32a)

l - lv
—m —mv)

X Pyu)Gl(ry + ro)uy + + 1 du,. (32b)

L
x (I + D)l + ;—)IQ(M

and, in the other,

tm

Jo=3 [Qro, o + g)ln( AL4

The products of two spherical harmonics in (32a) can
be expanded in the usual way as sums of single
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harmonics

Q(6, p)Q (0, @)
=S
l

my

)(1 + DO, ),

-m ml
(33)
whereas the single integral in (32b) can be converted
into a double one with the same argument for G as in
(32a) by multiplying with the delta function

Muy — uy) = Z U + %)Pzz(uﬂpz,(%)- (34)

On substituting (34) in (32b) and expanding the
products of Legendre functions of u; the same way
as in (33), as the factor of

(I + D+ Bz + HQMO, PIP;,(u1)Py,(ur)G(w)

m=m; + m,,

(35a)
we obtain
L r - 1 L L,
I VIt . (35b
“(M —m - —mv) “(0 0 0) (355)
From (32a) and (33) this factor becomes
" l 1 I
rZta(_ o)
m \—m m; m-—m
L l l [N
x I ! 2 ) 35¢
Q(M -m; my—m - (359
l L 1y
=2Ia A+ 9P
my A —-m m; m-—m
L 1 -- A1 l,
x I I ! 2 )
n(M —m ) Q(m —-m; my—m)’
(354d)
. L i - R P A
= o, I 35
%“4M —m ~)“@ 0 J (35¢)

in view of (A3) and (A6). The expressions (32a) and
(32b) are thus identical, provided G(w) does not depend
on » or the 1. While this is not a rigorous proof that
G(w) must be independent of these quantities, it
makes it more than plausible. A complete proof would
have to show that the reduction for » to » — 1 vectors
gives identical results even when (6,, ¢;) # (0, @2);
the writer has been able to derive such a proof, but
since it involves quite a number of intermediary
lemmas, it is omitted here.

If the spherical harmonics in both (3) and (27)
are given in normalized form, we obtain for the factor

Ky from (1), (29), and (31)
K%(1, m)

. . I, - 1,

= ren iy (| )

M —-m —my
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C. Relation of f and G

Having established the invariance of G(w) with »
and 1, it is an easy matter to find the exact relation
of G(w) to fand L in (27). One simply has to put
v = 1, in which caseonly one term in the expansion
(3) survives in view,of the orthogonality relations,
and the equation to be solved becomes

f(r)= f_lG(ru)PL(u) du.

Here it should be noticed that r can by definition take
only real nonnegative values and f(r) can to some
extent be chosen arbitrarily for r < 0. The easiest
way is to multiply f{r) by the Heaviside function
H(r); any ambiguities arising from branch points of
f(r) at r = 0 are thereby automatically eliminated.
Correspondingly, we may choose G(w) = 0 forw < 0,
so that (37) becomes

SOHE) = f Go(ru)P () du,

where the suffix L has been added to G to indicate
which Legendre polynomial enters into the transform.
For L = 0 we obtain

(37

(38)

FOHE) = f Go(w) (f’rl”) (39)
with the solution
Go(#) = (dldw)[wfow) Hw)). (40)

For L =1 the corresponding equation and solution
are

J(H(r) =ﬁrGl(W)(W/r)(dW/r), (41)

Gy(w) = wHd[dw)[Wf(WHW).  (42)

The solutions for the transforms in (38) with L > 1

are less straightforward in general, and the only case

discussed in the present paper is that of a real power

f(r) =rN. 1t is obvious from (38) that G (w) must

also be proportional to the same power
Gr(w) = Cyw™H(w),

where C y is the reciprocal of the integral
1 3 —1-N
fPL(u)uN du = 7 ['(1 + N)2
0 (1 + N — $DTE + 3N + L)
(44)

(43)

[cf. (3.12.23) of Ref. 3). Hence we get
=(1+N)(3+N)---(L+N+1)

, Leven,
Q+N—-L4+N-L)---N

LN
(45a)
__(Q2+N@+N)---(L+N+1
Q+N—-L@4+N—-L)y---(N—=1)’
L odd, (45b)
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valid for
N>L-—2.

The exceptions are L = 0 and L = 1 for which the
products in the denominators of (45a,b) become
empty with the value unity, and hence these formulas
are valid provided

N> —1, (45d)
N> -2, (45¢)

in agreement with (40) and (42). A more detailed
discussion of the solution of (38) in the general case
with L > 1 will be given in a subsequent paper.

(45¢)

L=0,
L=1,

IV. DISCUSSION OF RESULTS

The integral expressions (23)-(25) with (31) and
(40), (42), or (38) provide a general solution for the
radial factors R(l, m;r) in the expansion (3) of ¥ as
defined in (2); to the writer’s knowledge, this form of
the solution is completely new, apart from one
special case mentioned after (48) below. The form of
the function (25) is such that the factors R” can be
interpreted as weighted averages of another function
G, not of r,,, itself, but of its component along a
prescribed z direction. However, it should be borne
in mind that the quantities , occurring in (25) do not
represent physical direction cosines, but are simply
integration variables; all the dependence on the geo-
metric angles is contained in the spherical harmonics
in (3). It is interesting to note that the partitioning
of R according to (23) with the object of keeping
G(w) invariant leads to factors K”, and hence R’,
which agree with the singly-primed factors derived in
11T (29), (34) for the two-center expansion for L = 0,
and only differ from those in II (33), (37) for the one-
center expansion by the factor (—)*+Z; yet the precise
partitioning in Il had no stronger motivation than
keeping the recurrence relations between the R’ as
simple as possible.

The occurrence of the Heaviside function H(w) as
a factor in G(w) in (24), (25), and (38) means that
in general the integration is effectively carried out
over only half the »-dimensional hypercube —1 <
u; < 1, the domain on one side of the hyperplane
w = 0 (which passes through the origin) having zero
integrand. If for a particular index /

re> 21, (46)

i#i
the surface u, = 1 is everywhere a boundary of the
integrated domain, and u;, = —1 lies wholly outside

it. Thus, if the first integration is carried out over u;
the lower limit is a function of the other us, but the
limits of all subsequent integrations are independently
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() (b)
FiG. 3. Position of the plane w = 0 in the ucube. (@) r, > r; + r;,
Oy lri—ro] <ra<ri+re.
—1 and 41. If, however, none of the radii satisfies
(46), no face of the cube lies entirely on one side of
the separating plane, and hence the lower limits of at
least two integrations are variable. The Heaviside
function thus automatically sorts out the various
regions S; a passage of the separating plane through
a corner of the cube corresponds to the passage to
another region. This is illustrated in Fig. 3 for the
case v = 3. ‘

If the integrand in (25), apart from the factor H(w)
of (38), is regular everywhere in the hypercube and
is invariant under simultaneous change of sign of all
the u,; (an even function), then the integrals over the
domains w Z 0 are identical. We may therefore drop
the factor H(w) and take instead half the integral over
the whole hypercube; from this point of view there
is no separating plane and the expansion (3) is the
same in all regions. Thus, if ¥ is a sum of terms of the
form (6b), it follows from (30b), (31), (38), (43), and
(45) that, for

N=L+4+2%, k=0,1,2--", 47
the same analytic expressions for the R(l, m;r) are
valid for all r; this is in agreement with the fact that
both the solid harmonics r , Y¥ (0,45, ¢.45) and all
positive integral powers of r? ;, have universally valid
expansion coefficients R.*61!

The evenness of the integrand without analyticity
throughout the cube does not ensure the uniformity
of the integral through all regions. Thus we obtain
from (40) for

V = ray, Gow) = d(w), (48a,b)
which is an even function even after multiplication
by the P, (u;) compatible with (30b); yet this was the
case for which the existence of different regions was
first established by Laplace. The identity of the coeffi-
cients L [r4! with the double integral (25), using (23),
(31), and (48b), has already been established by
Nozawa and Linderberg.?

11 B, Friedman and J. Russek, Quart. Appl. Math. 12, 13 (1954).
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Whenever one of the indices /; is zero, the integra-
tion over the corresponding u; can be carried out
explicitly. In particular, the expressions (21) and (22),
and hence the form (10) given by Milleur et a/.2 for
the angle average (f), follow from a repeated integra-
tion of (23)-(25) and (40) with all/, = 0 since, in view

of (31),
K (0 e 0) - 21—v;

the function Gy(w) is thus identical with g,(w), which
would precede g, in the recurrence relations (22b).

The integral form of the radial coefficients R, as
opposed to the series in I-III, makes possible the
expansion of nonanalytic, even discontinuous func-
tions f(r4z) in (2). A discontinuity in f will produce
a delta function in G(w) in view of (38)-(42). If
Sf(r p) diverges at r,p =0 but it is known from
other considerations that a required integral over r p
is convergent, one can introduce a cutoff at r,z =
€ > 0 and let € tend to zero later; this merely means
we replace H(w) by H(w — ¢) in (38)-(42). An inter-
esting application of this arises in the expansion of the
first-order irregular solid spherical harmonic 1

Gy(w) = w'd(w), (50a,b)
if the formula (42) were applied uncritically, but this

expression is meaningless. On introducing a cutoff,
we can put from (42) and (50)

G,(w) = lim [e16(w — €)]; (50c)
again the expression has no limit as ¢ — 0, but we
can add any even function y(w) to G,(w) without
affecting the integral (25), as the product of the P;(u)
is odd in view of (30b) and (31). The delta function
d(w) is such an even function of w; thus we can put

Gy(w) =lim e [§(w — €) — d(w)] = —d'(w) (50d)
by L’Hbpital’s rule. Even more elaborate tricks are
required in the expansion of the higher Y¥; except
for L = 2, € cannot be made to tend to zero, at least
not for values of the r; corresponding to the region S, .
Similarly, a cutoff must be introduced in the expansion
for V =r%, where n < —1; after performing the
integrations, ¢ may be reduced to zero for —1 >
n > —3, but not in general for n < —3 (cf. Milleur
et al.1°).

Another possible operation on G(w) follows from

(26):

(49)

__ 2
V =cos 0,55,

V—Gw) < VIV — G"(w). (51)
Applying this to (48), we obtain
V=53(rAB)= _LV2L; G= —_1—6"(W)
47 rup 4

(52
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For the angle average this leads to the expression
(22) of Milleur, Twerdochlib, and Hirschfelder!?; for
general /; (23)-(25) integrate to the formulas given
by Tanabe'? and in III (40); as first pointed out by
Milleur et al., the latter formula should be divided by
(—8), not only for the angle average, but for all 1.

One aspect which awaits fuller investigation is the
convergence of the expressions. Two main types of
convergence have to be considered: (a) of the indi-
vidual integrals (25) for all fixed sets r,; (b) of the sum
(3) for all fixed sets (r;, 0, @,), the radial functions R
being given by (23)-(25) and (31). With regard to (a) it
is clear that the integrals converge whenever G(w),
considered as a function of a single variable, is every-
where integrable. Difficulties may arise through singu-
larities at the origin and through the introduction of
generalized functions; some practical aspects of this
have been described in the preceding paragraphs. The
point (b) has not been investigated at all, and I can
only express my personal opinion (or hope) that the
expansion will converge in most practical cases.

Another point arising in this context is the possible
interchange of the order of performing the summa-
tions in (3) and the integrations in (25). It is easily
shown that a summation over all 1, m at fixed r, 0,
¢, u may diverge; one only has to put y = 2, L = 0,
0, = 0, u; = u, = 1, in which case the sum becomes

G(ry + ry) - 2 (I+ DPu(cos 6,). (53)

On the other hand, when integrations over the angles
with specific weight factors are carried out, the
resulting series at constant u may easily converge; the
advantage of this approach is that the integrations
over the radii and the angles are thereby completely
separate [which they are anyway in the expansion (3)],
but in addition the linearity of G(w) of (24), (25) in
the r, remains preserved; an application of this is
outlined in the next section.

V. APPLICATION TO TWO-CENTER
EXPANSIONS AND FURTHER RESEARCH

The main applications of the theory developed in
this paper are likely to concern two-center expansions,
corresponding to the case v = 3 (cf. Fig. 1). This raises
the question whether any advantage is gained by
identifying the axis 0,0, with the Z axis from the
start, i.e., by putting 6; = 0. Such an approach must
be emphatically rejected in the development of the
theory. The different radial coefficients R correspond-
ing to given /; and /; in (3) now depend on m, instead
of I, but their number remains the same; for instance,
in the isotropic case L = 0 in (27), |m,| = [m,| can

12Y. Tanabe, J. Phys. Soc. Japan 11, 980 (1956).
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take all values between 0 and /. , whereas /; runs from
{y — L to !y + L in steps of 2, the number of different
values being /. + 1 in either case. On the other hand,
one of the sides of the differential equations (5) is
lost if 6, is kept fixed, and the expressions derived
for R are bound to be more complicated than those
for fixed /3. This is borne out by the greater regularity
of the coefficients in the expansions for 1/r;, derived
in IIl than in the formulation by Buehler and
Hirschfelder®; a generating function which these
authors give in their second paper is too cumbersome
to be of practical use. Similarly Nozawa, who fixes
the direction of 0,0, ,7 is obliged to define generalized
Bessel functions carrying three indices when expanding
regular solutions of the wave equation; in the anal-
ogous expansion given in II for variable 6, the corre-
sponding expressions are merely products of Legendre
and Bessel functions which have to be added with the
appropriate angular integrals as coefficients.

Once the theory has been established, there are
fewer objections to fixing 6; = 0. If in the expansion
of (27) the radial coefficients corresponding to given
values of I,, my, Iy, m,, and my = O are summed over
all /5 including those for which R vanishes in view of
the conditions (30b, ¢), the relevant factor becomes
[in view of (28) and (34)]

L 1 I
L+ DI 1ok
%(3+2)Q(M

—m

13) P
, 0 13(“)

_ml

= | 2 (s + HPL P, ™ ()P, (v)P ()P, (u) dv,

= f PY(0) P (0)P™(6)0(ug — v) do. (54)

The complete radial factor R is thus obtained as
R, L, m;r) = (—)M(ll + ) + %)6M,m1+m2
1
X f IGL(rlul + Ity + "3“3)le(“1)Pzz(“2)P‘1‘,1(“3)

X P "™ (ug)P,™(us) duy du, dus, (55)

with possibly an additional sign change.? From a
theoretical point of view it is very doubtful if such a
formula could have been derived without going
through the procedure of Sec. 3. The expression (55)
itself is not too unwieldy, especially for L = 0; its
main drawback is that the upper indices now appear
inside the integral, instead of merely through the
constants I, in (28).

The integrals I, in the two-center expansion of an
isotropic interaction ¥ as in (2c) involve three factors;
in their normalized form (29) they are most easily
expressed in terms of Wigner 3j symbols, on which
there exists an extensive literature regarding both
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theory and tabulation (cf. Edmonds®® or Refs. 3, 5, 10,
and 16 of II); an approach to the theory in terms of
unnormalized 3j symbols, which are integers, was
outlined in II and will be further developed in a
subsequent paper in this series. Even if L 5% 0, the
integrals are easily calculated from those with three
factors by means of (A3).

The evaluation of integrals over all positions of two
particles with interaction

f d°r f dPrypi(r,) poT) V(X12)

can be turned, in view of (3), into a summation over
Iy, my, Iy, my, and Iy of integrals over the radii r, and
ry that involve the radial coefficients R, the separation
of origins ry = a being kept fixed. As these coefficients
themselves are expressed as triple integrals in (23)-
(25), the method would involve replacing the sixfold
integral (56) by a multiple sum of five-dimensional
integrals of the form

1 1 1 PO Lo
f f f f f d*udr, droG(riu; + ratiy + ryuy)
—1 J—1J-1 Jo 0
X Zl("l)Xz("z)le(“1)Pzz(u2)Pza(“3), (57)

which appears a most uneconomic procedure. How-
ever, if the functions y,(r;) and yx,(r,) either are inde-
pendent of /; and /;, or else can be broken up into
terms which possess this independence, the integra-
tions over r, and r, could be done first for each point
of the cube in u space, and the remaining three
integrations could then be carried out numerically;
such an approach would be all the more practicable
when the r integrations can be performed analytically.

Fortunately the situation is more favorable in the
most important case V' = 1/r;,. In view of (48) the
function G(w) in (57) is the delta function d(w), and
the number of integrations is thereby effectively re-
duced by one, e.g., any variation of r, at constant u
implies a definite linear dependence of r, on r;. How-
ever, a further property of the delta function

O(kw) = d(u)/lk| (58)

reduces the number of integrations yet further. If the
integration over the radii has been carried out at a
particular point (u,, u,, 4;) in u space, the corre-
sponding integral at (ku,, ku,, kug) is simply the
original one divided by |k|. (This argument cannot be
applied if the first integration is over one of the u,
because of the finite limits.) It is therefore sufficient
to evaluate the r integrals for points on the surface of
the u cube, and the volume integrals with weight

(56)

13 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1960), 2nd ed.
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factors I1P; (;) can be expressed as surface integrals
with correspondingly adjusted weights. These surface
integrals would have to be evaluated numerically; a
Gaussian quadrature scheme could be set up in which
the points on the surface of the u cube are tabulated
for which the r integration is to be performed, together
with their weights appropriate to each triple (/;, /s, 1),
or {/;, I, m) if the approach of (55) is used.

The most delicate part of such a scheme would be
the integration over the radii; it depends on the
nature of the functions ¥(r,) and y(r.)—whether these
are best performed analytically or numerically. If they
are Slater functions or products thereof, analytic
methods are appropriate. We may define

Iy =ffexl) (—ary -~ ﬁ"a)"i"é
)

X O(riuy + rouy + aug} dry dry,

= (—0/02)(—0[9BY I, (59
where Iy; can be easily calculated:
Iy =0, Uy, Uy, iy > 0, (60a)
_ exp (= ugl aBfuy) — exp (= u azfuy)
oy — Pu,y ’
uy, iy >0, uy <0, (60b)
o ﬂi:ﬂ““s_/'”zﬂ’ Uy, iy >0, uy <0, (60c)
o |uy| + Buy
= ep(zraulud) 0, w <0, (60d)
oy + B |uy]

The derivatives (59) can then be calculated by recur-
rence relations,'*'* though care has to be taken to
avoid instabilities in the computation of the deriva-
tives of (60b), which can be expressed in terms of
confluent hypergeometric functions.®14

The situation is more involved if the functions y,
and g, are not just products of powers and exponen-
tials, especially if they contain a factor arising out of
the expansion of a Slater orbital about a center other
than O, or O,, as in the Barnett-Coulson approach
to the evaluation of 3- and 4-center integrals.'®'” An
increment in r, will correspond to various increments
in ry, depending on the ratio u;/u,. Unless, therefore,
x1 and x, can be evaluated rapidly for arbitrary values

14 K, Ruedenberg, K. O-Ohata, and D. G. Wilson, J. Math. Phys.
7, 539 (1966).

1 R. A. Sack, C. C. J. Roothaan, and W. Kolos, J. Math. Phys. 8,
1093 (1967).

16 M. P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc.
(London) A243, 221 (1951).

¥ F. E. Harris and H. H. Michels, J. Chem. Phys. 43, S165 (1965).
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of their arguments, numerical quadrature would be
too time-consuming. It may be that in this case the
expansion of an orbital about one center in a com-
plete orthonormal set about another center would be
more efficient; with the basis set of Lowdin-Shull
functions®® recently proposed by Smeyers'® each
integral would be a sum of terms (59), which could
be evaluated on the basis of (60). It appears, however,
from the applications quoted by Smeyers that the
convergence is rather slow.

The foregoing discussion is of necessity rather
sketchy since no actual calculations have been carried
out along these lines; in consequence the writer has no
idea how well the new approach would compare with
other methods. In view of the importance and the
difficulty of calculating 3- and 4- center integrals, no
avenue should be left unexplored, and the ideas have
therefore been presented as far as they have been
thought out to date.

Two other directions for further research are
mentioned in conclusion. One concerns the generaliza-
tion of the expansion (3) to vectors in an arbitrary
number of dimensions. The form of the function G,
depending on the projection of the vector rp onto
a fictitious polar axis, can be adapted to these cases
without difficulty; the further factors in the integral
(25) and in the definition (38) of G would be cosines
in the plane and Gegenbauer functions in more than
three dimensions (cf. Sec. 3.15 of Ref. 3).

An interesting problem in pure mathematics may
be approached from a new direction on the basis of
the present research. The solutions for R when V is
of the form (6a) were presented in IIT in terms of
Appell functions F, and here in terms of the integrals
(25), where G is still a power. This suggests the possi-
bility of expressing F, in terms of three-dimensional
integrals; so far it has not been possible to express
this function in terms of simple single or double
Euler integrals.?
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APPENDIX A. SOME RELEVANT PROPERTIES
OF THE LEGENDRE FUNCTIONS
AND THEIR INTEGRALS

The associated Legendre functions P satisfy the
well-kriown orthogonality condition

f_l PI@P ) du = (=)"0,(1 + b (AD

From this relation and the completeness of the func-
tions follows the expansion for the delta function

o — ) = (" S+ HPPWP"(W), (A2)

valid for arbitrary m; Eq. (34) represents the special
case m = 0. Similarly with the definition for the
integrals (28) and (Al) and (A2), the expression (33)
is an identity. The integrals (28) are invariant under
permutation of the columns, and the single integral
over u can always be turned into a double integral by
the insertion of the factor (A2). Carrying out both
integrations and summing, we obtain the identity

h(1~-u ml~~u)
e e me
m | PR | I
=(-) z(l+%>rn(1 “ )
7 m - m, —m
X In(l la+1 ls).
m o mey cccom,)’

m=m;+--+m, (A3)

For the last result we make use temporarily of the
normalized harmonics (1b) and their integrals (29).
For products of three harmonics these integrals are
given in terms of the Wigner 3 symbols:

II ( ll 12 l3)
Y
m; My mg

=[H(2l,.+1)T(l1 Iy 13)(11 A 13)‘. (Ad)

4z m, my mg/\0 0 O

The Wigner symbols satisfy the orthogonality relation
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[cf. (3.7.8) and (4.6.3) of Ref. 13]

z(ll I l)(ll Iy l')
m\m m—m —m/\m m-—m -—m

8y

=+ 15(11 LD, (AS)
where 6(/; /, l5) is unity, provided the triangle condi-
tions (30c) are valid, and zero otherwise [though in
this case the sum (30b) may be even or odd]. Re-
expressing (Ib) and (29) by their unnormalized
counterparts (1a) and (28), we obtain from (A4) and
(A3)

Zln(ll I, I)In( I, I, 1)
m \mM; m—m; —m —-m;, my—m m

b o [l I 1
= O . (A6
1+%I“(0 0 0) (48

It is intended in a future publication to establish an
exhaustive theory of the integrals [, by analytical
methods only, so that no group-theoretical arguments
are required to derive results such as (A6).

APPENDIX B. ERRATA TO PARTS 1,
II, AND I

Part I: J. Math. Phys. 5, 245 (1964).
Abstract: Delete “forn = —1l and n = —2.”
Abstract: In the last line read “or of” for ““of of™.
(27a): The second line should begin

X FRl—n d —dn+ b,
(36b): The first line should read
_ (=D - A
B ri :

(49): Read (25 + 2/ 4+ D! for (2s + 2! + 1)!!

Part II: J. Math. Phys. 5, 252 (1964).
Line following (47) should begin

“the value of L at constant N”.

(57a): Read “r2” for “dr?” in last fraction.
Part II1: J: Math. Phys. 5, 260 (1964).
(40b): This should be multiplied by a factor —3} to
read
=)L — DN QL -
w245 — 1)1 2ATAL
p- 266, 2nd line of Sec. (a): read “‘charge” for “‘change”.

R0, 1) = ¢
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Relation between Creeping Waves and Lateral Waves
on a Curved Interface*
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Diffraction effects at a gently curved interface between two media are investigated. Particular attention
is paid to the behavior of the field on the diffracted rays which propagate along the interface into the
shadows. It is found that far from the launching point of such a ray the field comprises of a series of modes
which decay exponentially, due to the continuous leakage of energy away from the interface. At moderate
distances, in the penumbra region, this series is poorly convergent. It can be converted into an integral,
which can be evaluated asymptotically there, yielding a field with an algebraic decay. The field is like
that diffracted along a plane interface, the so-called lateral wave, and reduces to it when the radius of
curvature becomes infinite. The regions of transition from one representation to the other are deter-
mined, and uniform asymptotic expressions, valid across those regions, are given. All our results apply
to a two-dimensional scalar problem, but results for three dimensions and for vector problems can be

derived in a similar way.

1. INTRODUCTION

ET us consider radiation incident from a “‘slow”
medium upon a curved interface with a “fast”
medium. Such radiation, incident at angles less than
the critical angle, is partly reflected and partly
transmitted. A ray incident at the critical angle gives
rise to a transmitted ray tangent to the interface. It
forms part of the boundary between a region illumi-
nated by transmitted rays and a shadow region
(Fig. 1). We study the diffracted field in this shadow
region and in the “incident” medium adjacent to it.
For simplicity we consider the two-dimensional case,
in which the interface is a curve.

We expect the critical ray to produce a surface
diffracted ray.! This surface ray will shed tangent
diffracted rays into the shadow, and shed rays re-
fracted at the critical angle into the “incident” medium.
If the interface is curved, this combination of rays is
called a “‘creeping wave,” and the corresponding
field decays exponentially with distance along the
interface. However, if the interface is a plane, there
is no shadow and the diffracted field is present only
on the “incident” side, where it is called a “‘lateral
wave” or “head wave.” The corresponding field decays
algebraically with distance like s—f. We wish to
determine the relationship between the two kinds of
waves, the creeping and lateral waves, associated with
the interface.

* The research in this paper was supported by the United States
Air Force Cambridge Research Laboratories, Office of Aerospace
Research, under Contract No. AF 19 (628) 3868. Reproduction in
whole or in part is permitted for any purpose of the U.S. Govern-
ment.

1J. B. Keller, in Calculus of Variations and its Applications, Proc.
Symp. Appl. Math. (McGraw-Hill Book Company, Inc., New York,
and American Mathematical Society, Providence, Rhode Island,
1958), Vol. 8.

We show that both kinds of waves are present in the
case of a curved interface. Far from the point of
diffraction, the field is given by a series of creeping
waves, one of which is dominant. The series is slowly
convergent near the point of diffraction, and can be
reexpressed as a lateral wave. We find the distance at
which the behavior of the field changes from lateral
to creeping wave. In addition we obtain a uniform
expression for the field, which reduces to the lateral
wave at short distances and to the series of creeping
waves at large distances. This expression provides a
description of the field in the transition region.

The “fast” and “slow” media are characterized by
wavenumbers k, and k,, respectively, with

A time harmonic source Q, with time dependence
e~ is located in the slow medium. The interface is a
smooth curve, concave when seen from the source.

At high frequencies (large &, and k) the field can be
expressed in terms of rays as follows (Fig. 1):

In region I the leading term of the field arises from
a refracted ray QA4P,. The law of refraction (Snell’s
law) is

kosin f = k; sin «. )]

In region Il the leading term arises from a direct ray
OP, plus a reflected ray QA4P,. In region III there is,
besides the reflected ray QCP;, adiffracted ray QBEP;,
whose field may be of the same order of magnitude as
(or even larger than) the field of the reflected ray
(especially when P, lies near the interface and when
k; has a small imaginary part, corresponding to
slight loss). Region 1V is a shadow. The field at P,
arises from a diffracted ray Q BDP, and an “evanescent
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FiGg. 1. Ray paths near an interface between two media.

ray” QFP,, which is usually of a much smaller order
of magnitude (unless P, lies near the interface and
near B). At first glance there are two transition
regions: between regions II and III (point P;), and
between regions I and IV (point Pg), in which the
field cannot be expressed in simple ray terms, and a
uniform asymptotic expansion is necessary.

The geometric theory of diffraction® predicts that
the ray QB which hits the interface at the critical
angle

sin o, = k,k, )

launches diffracted rays which propagate along
geodesic lines on the interface. At large distances from
B, the decay of the field associated with these rays is
exponential due to the continuous shedding of energy
tangentially from the interface into the shadow.
When the curvature vanishes, the diffracted field does
not decay exponentially, since no tangential shedding
of energy takes place. There is, however, a continuous
shedding of energy back into the slower medium by
refraction, giving rise to an algebraic decay of the
field. We see that this is also the behavior near B. Thus
there is another transition zone between the algebrai-
cally decaying field near B and the exponentially
decaying field far from B.

F1G. 2. Line source inside a transparent circular cylinder.
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II. ANALYSIS OF A SINGLE MODE

To explain the mechanism of energy transport from
source to observation point, particularly in the
shadow region, we investigate first the propagation of
a single mode, since the total field is a sum of such
modes. For the exact analysis of a mode, we assume
the interface to be a circle (circular cylinder), since
this is the only geometry in which a two-medium
problem can be solved by separation of variables (see
Fig. 2).

We wish to determine a function u which satisfies
the following conditions:

V+KkHu=0 at p<a, (3a)
M+ kK)u=0 at p>a, (3b)
lim [u(a + €) — u(a — ¢)] = 0, (3¢)
€0
lim [?ﬁ _ |=o (3d)
=0 L0plore Oploe
lim [p}(0u/0p — ik,u)] = 0. (3e)
pr o
We choose a mode of the form
{Hfll’(kop)ei“a for p>a,
AT (kp)e® for p<a. ()
Because of (3¢) »
A = u(kia)/H;(;l)(koa): (5)
and because of (3d)
L g0k = 4L k)|
dp p=a dp p=a

which, with the help of (5) yields an equation for the
determination of u:
_ HY G Tk _
"HP(ka) I (ka)
where the prime denotes differentiation with respect
to the argument.
Equation (6) has been thoroughly investigated.?3
Its asymptotic solution for k,a > 1 is
py ~ kall + 7,627}k a)yF + O(k,a) )
= k,a + iaa,,

M(y)

0, (©®

)

where 7, are the solutions of

iy _ (bl (5 (YT o
Afr,) 2 k, koa
2 W. Streifer and R. Kodis, Quart. Appl. Math. 21 (4), 285 (1963);
23 (1), 27 (1965).

2 Y. M. Chen, Ph.D. thesis, N.Y.U. (1963); J. Math. Phys. 5,
820 (1964).
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Caustic

Interface

FiG. 3. Ray paths for a single modeof a transparent circular cylinder.

Thus, the mode given in (4) may be written as

HY(k,p)ets? for p>a,

w (8)
By &) 5 (fp)e™® for p < a.
J (k@)

The geometrical interpretation of (8) follows from
Fig. 3:

u =

OP, for observation point inside the cylinder,

P= OP, for observation point outside the cylinder,
d = BP,
po = OC = k,[k; [from Eq. (2)],
s = arc AB,
b= BP,.

If P, is not too near to the caustic (point C), then

koa < k,p < ka,
since
k,a =kasino, = k,p,;

thus the Debye approximation for J, (k;p) and J, (k;a)
is valid. Also,

Ju(x) = AL () + HP()] ~1H2(x),  (9)

with x standing for k,a or k;p, since H?(x) becomes
exponentially large, whereas H{"(x) becomes ex-
ponentially small when k; has a small positive imagi-
nary part. Thus, for points inside the cylinder [Egs.
(7) and (8)]:

u~ H(ka)(Ka® — Kiah/(klp® — Kia))t

X exp {i |:(k§a2 — k2a®)t — (k2 — K2}

+ (k,a + iax,) (0 + cos Ke + cos™! M)]} (10
k; kp

1787
It is easy to show that
kid = k,a cosa, — (p® — P?)%],
= (k2a® — k2a®t — (k2% — k2a®)t, (1la)
0, = 6 + cos™ (k,/k;) — cos™" (k,alk,p), (11b)
2 2 g2 o} 3

(k;a kaa) _ ( a cos «, ) (11¢)

k2p® — k2a? acosa, —d

For observation points outside the cylinder we get, in
a similar way,

w~ (2fmi)(k2p® — kia®) dexp (i{(k2p* — KZa»}
+ (kya + iaw,)[8 — cos™ (k,alkp)]}), (12)

with
(kop* — Ka?)t = (k,b)t, (132)
0, =0 — cos™ (k,alk;p). (13b)
Thus, the asymptotic form of a single mode is
( (z)% exp {ik,(s + b) — a,s}
i (k,b)t
U ~
b (14)
Hf,?(kaa)( a cos o, )
acoso, — d
| x exp [i(kd + k,s) — a,s].

The interpretation of (14) in ray terms is obvious!'4:
A ray which originates at point 4 (Fig. 3) reaches the
observation point P, in the exterior region by creeping
along the interface with an exponential decay o, to
point B, and shedding tangentially from there to P,.
A point P, in the interior region is reached by creeping
along the interface to B as before, and refracting into
the interior according to Snell’s law [Egs. (1) and (2)].
Equation (14) also contains the correct geometric
divergence or convergence coefficients required by the
principle of conservation of energy. Due to the
principle of reciprocity, the same formulas would
apply for the case where the roles of source and
observation points are interchanged. (The diffraction
and splitting coefficients® associated with this process
cannot be determined from the study of a single mode.)

III. ANALYSIS OF A CANONICAL PROBLEM.

The results of the last section are now used in the
analysis of a canonical problem, namely, the field of a
line source near the interface between a circular
cylinder of a slow medium embedded in a faster
medium. Consider a unit strength line source located
at the point Q in the interior region (Figs. 2, 4). The
function u to be determined satisfies Eqs. (3b, c, d, €)

4J. B. Keller, J. Opt. Soc. Am. 52, 116 (1962).
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Caustic

Interface

FiG. 4. Path of a diffracted ray from source into shadow region.

as before, and instead of (3a) we require

(V2 + ku = —[8(6)0(p — p))/p at p<a. (15)
The techniques of solving this problem are .well

known.>¢ The solution in the exterior region (p > a)
is

-1 & ooH(l) ka J kz ’ eiu(9+2n1r)
u(Ps 6) = — # ( P) "((1) P) dl"
2ma n=0 J-w J;t(kia)Hy (kna)M(lu)

= % Up, (16)
n=0

with M(u) given by Eq. (6).
The integrals in (16) may be converted to a sum of
residues, yielding
i o0
uo(Ps 0) = —-" z
as=1J, (ka)HP(k,a)0/0M(W)| -,
(17
and similar expressions for =1, 2,---. The
numbers yu, are the solutions of Eq. (6), which are

given by (7). Thus, using the results of the former
section [Eqs. (8) and (14)], we have asymptotically

e 4
wp 0~ = () (o)
a\=w) \acosa, — d'
o P Lilkid” + k(s + b)]}
(kob)

H‘(‘l)(kop)J‘lp(kiP/)eiu,,O

P

) sl

-2 HY (k,a)(0/omIM (1) |y, ()

(see Fig. 4). It is seen that for observation points on
the interface the expression (17) simplifies to

ua, 0) = _ 1 ( a cos o,

i
ot ki +Fos)
a

acosa, —d’

o0 —&yS
e »

D L —
=1 (O/)M (1) 1,
5 T. T. Wu, Phys. Rev. 104, 1201 (1956).

8 W. Franz, Theorie der Beugung Elektromagnetischer Wellen
(Springer-Verlag, Berlin, 1957).

(19)
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This shows that the diffraction coefficient associated
with the tangential shedding of the rays is D, =
QijmHD (k)] . Tt follows from Eq. (7) that for
ka» 1, p, ~ k,a. Thus, if (18) converges rapidly
(i.e., when s is large) and only the first few terms
contribute effectively, we may take the diffraction
coefficient to be approximately

(n/2i)tD, = [HO (k)]

3 1%

~HY (ka —1~(&ﬂ) (31) 20
[Ha(koa)] 2 )\t (20)
and take it out in front of the summation sign. It is
also worth mentioning that the geometric factor
[(a cos a,)/(a cos «, — d’)]}, which accounts for the
convergence of the ray tubes towards the caustic,
causes the field at the interface to increase when the
source point moves farther away from the interface.
When the source point is near or on the caustic, the
above formulas have to be modified, since the Debye
approximations become invalid. For p’ < p, there
will be no shadow region and no critically refracted

rays exist. From Eq. (7) it is seen that

s ~ 7, (b )k, ) (ko) @1,

The series in Egs. (17) or (18) will converge rapidly
only when

(k,s)(k,a)F > O(1),
or equivalently,

(k,5) > O(k,0)t, 22

which means in the deep-shadow region. For k,a > 1
(gently curved interface), the penumbra region, in
which (18) is useless, extends over a very considerable
number of wavelengths. Since the field over a plane
interface (k,a — o) is well known,? one is led to the
assumption that for large X, one may find an alterna-
tive field representation analogous to the plane
interface form.

IV. COMPARISON WITH THE PLANE
INTERFACE PROBLEM

Letting a — oo in Fig. 2, while leaving the distance
[ = a — p’ unchanged, transforms the configuration

to that shown in Fig. 5. The field in y > 0 in this case
is given by’

u(x, y)
i rexp{i[(ki—z2)*1+tx+(k3—t2)*y]} it
P N B J '

(23)
It can be shown (see Appendix A) that if we let

? L. M. Brekhovskikh, Waves in Layered Media (Academic Press
Inc., New York, 1960).
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F1G. 5. Paths of direct and diffracted rays from source to observation
point on a plane interface.

a — oo, the integral in Eq. (16) which corresponds to
n = 0 reduces exactly to (23). The change of variables
used is

p = at,
n=p—a, 5 =a—yp, (24)
& = af.

All the other terms (n # 0) in (16) correspond to rays
which encircle the cylinder n times or undergo n
internal refractions before reaching the observation
point. For large k,a these terms make a negligible
contribution to the field. In order to investigate the
behavior of the field along the interface, we let y = 0
and p = a, and may then write

L T (kipE™
2ma J~o J (k;a)M(u)
_LI%WMM—ﬂﬁ+mg,
2m Jw (K = 9 4 (K3 = )}
This integral can be evaluated asymptotically.! For
observation point P to the right of B (Fig. 5), the two
leading terms in the asymptotic evaluation correspond
to the contribution from the direct ray QP and the
critically refracted lateral ray QBP. When QP 3> OB
and the lower medium is slightly lossy, the lateral
wave will be the principal part of the field. It is
obtained from the integral around the branch cut,
arising from the branch point at ¢t = k,, and is given

by

lim —

a—* oo

(25)

1 k?  exp {i[k,QB + k,BP — w/4]}
emie -k (k,BP)! '

Ujat

(26)

We may derive an analogous result for a slightly
curved interface, starting from Eq. (19). By a slight
modification, the field along the interface becomes

uya, ) ~ — 1 (g)é (_____a 08 % )% e
a\w/ \acosa, —d’
s __exp(iusja) @n
p=1 (a/alu)M(.u’) lu—:u
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Since the series in (27) is poorly convergent for small
u,sla, we convert it back to an integral:

_ 13 exp(ips/a) =_1_i_f°°exp(i/4SIa)d
0 H @MW)y, 2mate M@
_ 1)
=5 (28)

The path of integration has to encircle all the poles of
M(y) which lie in the upper half of the  plane. The
arc at infinity does not contribute as long as s > 0,
which indicates that the result is valid only in the
shadow region. It is shown (in Appendix A) that for
large k.,a

_ i (“exp(ipsa)
= L, M)

eits
~ dt,
LM—N+M—W

etts
= dt, (29)
L%—N+M—N
with the paths C and C’ shown in Fig. 6. [The choice
of the branch cuts is such as to assure that

Im (k2 — ) >0 and Im (k2 -2t >0

on the entire upper Riemann sheet. This requirement
is necessary to satisfy the radiation condition.] When
k,s is not small (i.e., when s is larger than one wave-
length or thereabouts), the integral in (29) may be

evaluated asymptotically as follows. Let
t=k,+ ik 2% (30)

The integrand may be expanded as a power series in
z, yielding

f eits dt
o (k5 — &+ (kE —
L1 ikos _nt
= 2lkoe o % [Z _ ( 2l) ko% 22 + 0(23)]
(ki — kit Jor (k% — k2)

x exp (—k,sz8) dz. (31)

FiG. 6. The path of integration in the complex ¢ plane.
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Z-plane

Fig. 7. Map-
ping from ¢ plane
into z plane.

Because of the exp (—k,sz?) factor in the integrand of
(31), the principal contribution to the integral will
arise from that portion of the path where z is small.
The path C’ as mapped in the z plane is shown in
Fig. 7. In the neighborhood of z = 0, let z = r,e?”
and

exp (—k,sz%) = exp (—k,sr2 cos 2¢)

x exp (—ik,srisin2¢) —7w < ¢ < 0. (32)
We want the arc DE to contribute significantly to the
integral, since we assumed that the principal contri-
bution comes from the neighborhood of z = 0. Thus
we have to keep the quantity k,sr2 small. From (24)

and (30) we have

ro=lz| = |(u — ka)[kal. (33)
Thus the condition
ksr2= 0(1)
implies
[(u — k.@)k,al = O(1]k,s). (34)

On the other hand, a necessary condition for (25) and
(29) to be valid is (see Appendix A)

lu — koal > O(k,a)t (35

The relations (34) and (35) can be satisfied simultane-
ously only if

ks < O(k,a)t. (36)

Comparison of (22) and (36) shows exactly where the
transition from the creeping-wave representation to
the lateral-wave representation occurs.

The integral in (31) can be calculated (asymptot-
ically) in closed form by using the relations

f z™exp (—az?) dz

0, form=1,3,5,---,
={1-3-5---(m -2}
(za)%(m-kl)

, form=246,---.
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Thus we obtain

a J—w

i j‘” exp (iusfa) du

M(w)

f eitsdt

o (k2 = i 4 (it — it

2t ke "
~ ‘ - [1 + Ok, )™, 37)
2 K2 — K2 (k,s) (o))

and the expression (27) for the field along the inter-
face becomes

uya, 0) ~

1 K2 acosa, \
Q) k2 — K (a cos o, — d’)
9 exp [i(k,d’ ;}- kos)1

(kos)*
Comparison of (26) and (38) shows the complete

correspondence when a — co. For the transition
region

[l + Ok9)"]. (38)

kos ~ (k,a),

we may use the uniform asymptotic expressions for
the cylinder functions in M(u):

f“’exp (ius/a) du
—o M(u)

~— —k—i—; fjcexp (ipsfa) a',u/
S - )
y = exp (—in[3)(2/k,a)}. (392)

The integral in (39) may be substituted into (28) and
(27). It will yield (19) in the region

ks > O(k,a)t
and (38) in the region
k,s < O(k,a)t.

Equation (37) is not valid for s < 0 because the
integral cannot be evaluated by a contour integration
as shown in Fig. 6. As a matter of fact, s < 0 corre-
sponds to the illuminated region (see Fig. 4). The
asymptotic evaluation of the integral in Eq. (37) also
required s to be large. Thus, for s < 1 and the tran-
sition from s > 0 to s < 0, we look for a uniform
asymptotic representation® which connects smoothly
the different representations in the illuminated and the
shadow regions.

with

8 N. Bleistein, “‘Uniform Asymptotic Expansions of Integrals
with Stationary Point near Algebraic Singularity,” Commun. Pure
Appl. Math. 14, 353 (1966).
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The method of Ref. 8 is illustrated by the calculation of w,(a,0) near 6 =0, (Fig. 4), which

corresponds to s = 0.

sty = - 2L [ Bl (),
27a J-oo u(k-a) M(u)
k2a® — u®\exp (i{(k%a® — ¥ — (k32 — )} + [ — cos™ (u/k,a) + cos™ (u/ksp’ )]})
27T (k2p __[u) (k2 2 2)%+(k2 2 __ 2)‘&
N A+ o g exp {ik,ap(£)}
o (2;2 2 9 2) ar 27,2 2v% (40)
2w J-o \kip? kia® — £ (1 — &% + (kifk;, — &%)
with
Kt o 1 koaé kg
(&) = (ki[k2 — 52)‘} — (;02-;; — 52) + 5(0 + cos™* TP' — cos! k_,) 4D
Multiplying (40) by We can also show that
[(1 — &} — (K2 — et — & — (RE— Y B = =" 2| f(% ) — fO, 0} ~ —e"2s/a)l,
and making the change of variable £ =1 — ¢, we (44
obtain koaf(o’ O() = kzd’ + kas' (45)

ik
) ~ — —
uya, 9) -

x f_ wg(t)[(z — i — [:" . r)ﬂ

x exp {ik,af(t,0)} dt = u; + u, (42)
with
i< [_Klke— -0 TH_ g,
&0 I:kfp'z/k?,az -1 - z)J -t (422)
and
2 /2 %
f(ta) = KK — (1 — tp}f — [’Z - t)z]
+(1 - 1)[(01 + (—j) + cos‘lkﬁfjl——t)
iP
— cos! k"(lk t)} (42b)

Both u; and u, have a stationary point at

o =0 =cos™ kfl — )
at t=a ki
—_— cos_l M — (91 + .E) (420)
k.p’ a

for s/la < 1; Eq. (42c) can be solved approximately for

«, yielding
2 2y13
all___o (—s)
K \a

43)

- (s) [(K3a® — K2a®)(K2p’
alk,al(Ka® — K"t —

(2/2

It is seen that u, in (42) has a stationary point near a
branch point. u, in (42) may be evaluated by the
saddle-point method, since it has no branch point
in the vicinity of the saddle point. It yields exactly
half of the direct ray field (04 or QC in Fig. 1) as cal-
culated by geometrical optics. u, has to be calculated
according to the method given in Ref. 8. The result of
that calculation is

uy(a, 0) ~ exp [i(kd" + k,s — m/4)]

Wil(k,a)'B] _ Wil(k,a)*B]
8 [y" (k,a)t (k,a)t ] 40)

where
Wy(s) = f " exp [—(1%2 + sn)] dt,
—Ny . 2
= (2m)teirizes’ D,(is),

(46a)
D, (is) being the Weber function9 of order r.
- 50 ) e, (46b)
—i3n/8 52|\
"o (ezs/a/)* {g(O)(a_t{ ) -
~ 8 )[ (2s/a)*] (a:f o) } (“69

« is defined by (43), g(r) by (42a), and f(¢) by (42b).
Thus we have [in Eqgs. (19), (38), (39), (42), and (46)]
asymptotic expressions for the field along the interface
anywhere in the shadow region and also in the
transition from the shadow to the illuminated region.

? W. Magnus and F. Oberhettinger, Formulas and Theorems for
the Special Functions of Mathematical Physics (Chelsea Publishing
Company, New York, 1954).
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V. ASYMPTOTIC EXPRESSIONS FOR THE
FIELD ABOVE AN INTERFACE

Throughout the following analysis we assume
kd > 1. It is now possible to write down asymp-
totic expressions for the field in the various regions
shown in Fig. 8. Regions 4, B, and C are characterized
by the fact that

ko(P - a) > O(koa)%'
The field in these regions is

:
e, 0)~ 5 Qi (-2
27 acosa, —d

exp [i(k,d" + k,b)]
X
(kb)t

D,I(s), (47)

where

(47a)

I(s) = if""fﬂlﬁ/ﬂdﬂ_

aJ-o M(u)

D, is the diffraction coefficient, given (asymptotically)
by (20). The integral I(s) can be evaluated by (37) in
region A4, by (39) in region B, and by (28) in region C.
Regions D, E, and F are characterized by the fact
that
kop — a) < O(k ).

In these regions the Debye approximation is not valid,
and we have to replace in (47)

D,2fmi)}[e*[(k,b)}]

by the expression

Ai [k(p — a)(2/k,a)te )
Ai (0) )

Thus in regions D, E, and F we have

1 a cos o
ufp, ) ~ — [ ———2=—
. ) 27 (a cos o, — d’)

« Ailklp = Qk,a)te "]
Ai (0)

e I(s).  (48)

I(s) is again given by Eq. (47a), and can be evaluated
by (37) in region D, by (39) in region E, and by (28)
in region F. In the transition region I, between the
illuminated and the shadow regions, one may apply
the method of the preceding section [Eqs. (40) through
(46)] to obtain a uniform asymptotic formula con-
necting smoothly the field representations in the
illuminated region (obtained by geometrical optics)
and the shadow region. The corresponding g(¢) is more
complicated than that of the last section.

BENJAMIN RULF

F1G. 8. Regions of validity of the various field representations.

VI. GENERALIZATION TO AN ARBITRARY
CONVEX INTERFACE

The geometrical theory of diffraction shows how to
generalize our results from a circular interface to an
arbitrary convex interface. This can be done as
follows:

Let s be arclength along an arbitrary curved
interface with a = a(s) the local radius of curvature.
Then we replace s in all the above formulas by f§ ds
and s/a by {3 ds|a(s). Also «, must be replaced by

[see (21)]
()
N2/ Jofat’

The limit k,s = (k,a)} is replaced by

ds gt

JEO
The value of a in the diffraction coefficient D, should
be the radius of curvature at the point of shedding of
the diffracted ray. All these principles are discussed
in Refs. 1 and 4. Thus we replace (47) by

¥ 3
. (p, 6) ~ L(_Z_z) |: a(A4) cos o, j|
2a\=w ) La(A)cosa, — d’
ei(k,-d’+kab) i (
X ———— D I(s) (49)
(e
with a(4) denoting the local radius of curvature of the
interface at point A (Fig. 1). D, may be evaluated by
(20), with a replaced by a(D). Likewise

Tts) = i J:::exp [iu L %] / a(s)M(,u)} du (49a)

with M(u) given as before by (6), but every a is
replaced by a(s). When both source and observation
points lie above the interface, a similar analysis of the
field in the shadow region (“‘beyond the horizon™) can
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F1G. 9. Path of a diffracted ray when both source and observation
point lie in the ““fast’” medium.

be carried out. For example, the field at p > a due
to a source at p’ > a is given by'®

wp =5 3 [ [HPUpHhep)
H(Z)(k a) )
(1) ' 1 0 iu(0+2nw)
+ HO(k o) H' (kop)mmm}e" 2 g
(50)
where
H?"(k,a) Ji(k.q)
R(u) = [ko Zu 5d) ~——] [M@]™ (50a)
H:‘z)(koa) Ju(kia)

and the principal part of the field in the shadow
region (Fig. 9) comes from the » =0 term. The
appearance of M(u) in the denominator of (50)
indicates that for small curvature and moderate s [i.e.,
1 L ks < (k,a)f], the field along the interface (which
gives rise to the ray that reaches P) will be pro-
portional to
et*os(k,5)~3

and the appropriate diffraction coefficients.®> The
existing literature mentions lateral waves only in case
that the source is located in the denser medium, since
that is the only configuration in which a ray tangential
to the interface can be launched on a plane interface.
Our analysis shows that this mode of propagation is
not restricted to that particular configuration.
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APPENDIX
The complex u plane (Fig. 10) is divided into
regions in which different asymptotic expansions for

(1)
H{¥(x) are valid. The solid and dotted lines separating
regions A and B are the loci of the zeros of H{(x) and
H®(x), respectively.
Region C is characterized by the relation
lu — x| < x4 (AD

In that region

HP(x) ~ 2[m)y Ai [y(s —x)] (A2)
16 w_ Streifer and R. Kodis, Quart. Appl. Math. 22, 193 (1964).
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Region A Region B

FiG. 10. Regions of validity of the various asymptotic expansions of
the cylinder functions.

with
y =@t (A2a)

In region 4

(1)
HP(x)
~ (2[m)t 2B {Fil(x* ~ ud — pcos™uf x — m/4]}

(* — uit

I resion B x [1 + 0(x"N]. (A3)
n region

(1)
H:‘Z)(x)

~ Fint 2R (=@ = X! + pcosh™ p/x}

(u* — xt
x [1 4 O(x™).
For |x} > 1 and Im x > 0, we write

(A4)

Ju(x) ~ 3H2(x).
When using the change of variables (24), we have for
a-—> o
(kip™ — it = p' (K} ~ [a*f(a — )}
~ p'(k2 — Bt (Asa)
Similarly,
(K2p* — iyt ~ plkE — 2.
Thus, from (A3), (A4), and (AS),
HLI)(koP)Ju(kiPI) eiua
HP(k,a)J (k.a)
~exp {ily(k; — ) — y(kE — B + &1}, (A6)
k [H (ko) HP(k,@)] ~ i(kE ~ 1, (A7)
kL) d (k)] ~ —i(kE — . (A8)
Equations (A6), (A7), and (A8) are not valid in the
neighborhood of u = k,a (region C in Fig. 10); but
since the path of integration in (16) and (25) may be
deformed so as to avoid this region, we may sub-
stitute Eqs. (A6), (A7), and (AB) in these integrals.

(ASb)



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8,

NUMBER 9 SEPTEMBER 1967

Electric Fields in a Semi-Infinite Medium Whose
Conductivity Varies Laterally

JaMes E. MANN, Jr.
Department of Applied Mathematics and Computer Science,
University of Virginia, Charlottesville, Virginia

(Received 19 September 1966)

The electric field induced in a semi-infinite medium whose conductivity varies laterally is calculated
when the inducing field is chosen to approximate a vertically incident magnetic wave which is polarized
in the direction of the conductivity variation. The specific form of the variation of conductivity is
¢ = 0, + 0,(y/d)?, where y is a coordinate parallel to the surface. It is shown for several specific cases that
the magnitude of the electric field is less than the electric field in a solid whose conductivity is g,. In
addition, the electric field is calculated for several values of gy/0, at y = 0.

I. INTRODUCTION

IN a recent paper, Fischer! has given a theoretical
discussion of surface impedance when the conduc-
tivity has the special form ¢ = ¢y 4 o, cosky, y
being a coordinate parallel to the surface. Aside from
the fact that so few theoretical investigations of
lateral variations of conductivity are available,
investigation of these phenomena is important in
certain areas of material science, as pointed out by
Fischer.! The phenomena associated with such varia-
tions may also be of interest in geophysics, especially
in geophysical prospecting methods such as AFMAG
and the magnetotelluric method.

In this paper, we formulate a problem similar to
the one stated by Fischer,! but our conductivity func-
tion is of an entirely different nature. The conduc-
tivity which we use is o(y) = o, + oy(y/d)®. The
important differences between this function and
o = 0, + 0, cos ky are that it has a single minimum
value at y = 0 and it is nonperiodic. Like Fischer, we
introduce an assumption to render the full wave
propagation problem more tractable. Indeed, we
assume that current is induced in the solid by a
spatially constant magnetic field applied at the surface
z =20 (see Fig. 1). Though the assumption of a
constant inducing field does away with the concept
of wave propagation entirely, the assumption is not
so severe as to render the solution useless for under-
standing physical phenomena.? The rest of this paper
is devoted to obtaining an expression for the electric
field E, in the x direction (see Fig. 1) when the in-
ducing field H, = const - exp (iw?) is applied in the
y direction. In addition, we examine the skin depth
and surface impedance for this polarization.

1 G. Fischer, J. Math. Phys. 5, 1158 (1964).

2 L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media (Addison-Wesley Publishing Company, Inc.,, Reading,
Massachusetts, 1960), pp. 186-188.

II. FORMULATION OF THE PROBLEM

When displacement currents are neglected and
exp (iwt) is used to reduce the time dependence,
Maxwell’s equations take the form

V x H = oE, 1)
V x E = —iwuH. )

In (1) and (2), H is the magnetic field, E the electric
field, 4 the magnetic permeability, and o the conduc-
tivity; all are in MKS units. By taking the curl of (2)
and using (1), we may obtain an equation for E. Thus

3)

When all field components are independent of x,
Eq. (3) for E, is

AE, — ivpoE, =0,

V x V x E = —iwucE.

4)
where

A = (34dy?) + (/022

We wish to solve (4) when the inducing field is of
the form
H, = const, on z=0.

)

As we shall see, it is impossible to satisfy (5), but a
minor modification mitigates the difficulty. We take

0 = 6y + o1(y/d)? (6)

as the conductivity function, where d is a reference

/X
Fic. 1. A conducting half- o= g,+ 0 (y/d)?

space. The conductor lies
in the region z > 0.

——y
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length. Using (6), we write (4) as
AE, — iopoy[6 + (y/d)P1E, = 0, (M
where § = g,/ . Equation (7) is nondimensionalized
by making the following changes of variable:
Ew = Eo'l’: }’I = }’/d,
2" =z/d; d = (ouc,)t,
where E; is a reference value for E,. In the new
variables (we drop the primes on coordinates), Eq.
M is
Ay — i(6 + yP)y = 0,

and we choose the constant in (5) in order that

—iwuH, = 0E,[0z = Ey/d,

®)

®

oyldz’ = 1 (10)

The first equality of (9) comes directly from (2). We
obtain the solution of (8) by separating variables.
Thus,

or
on z=0.

Y+ (b2 — id — iy?)Y =0,
X" — X =0,

(11)
(12)

where —b? is the separation constant, and Y and X
express the y and z variation. By a change of variable,
(11) can be transformed to the standard form of the
equation whose solutions are the parabolic cylinder
functions.® If we let

= y(2) - exp (in/8), (13)
Eq. (11) becomes
(d?Y]dr®) — (a + 1Y =0, (14)
where
a = —(b*— i0)/2 - exp (in[4). (15)

Equation (14) is exactly the equation of the parabolic
cylinder functions. A definite choice of @, and hence
of b2, is made by selecting only the solutions of (11)
which are even functions of y and which decay as
y — 0. The only difference between this and the
well-known quantum mechanics problems of the
parabolic potential is the fact that = is complex.*
When the above conditions are imposed, the values
of a are restricted to

a=—2n—1, n=01,23---.  (16)

When the parameter « is chosen to satisfy (16), the
solution of (14) is

1
Y = B, H,, [7/(2)*] exp [—7%/4], (17
3 Handbook of Mathematical Functions (National Bureau of
Standards, Washington, D.C., 1964), Chap. 19, p. 686f.
4 R, H. Dicke and J. P. Wittke, Inroduction to Quantum Mechanics
(Addison-Wesley Publishing Company, Inc., Reading, Massachu-
setts, 1960), p. 56.
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where H,, is the Hermite polynomial of even order.
The solution of (12) which decays for large z is

X = exp (—b,,2). (18)
The solution of (8) is, therefore,
W0y 2) = 3 Boy oxp [—bupz — y* exp (imf4)/2]
X H,,[y exp (in/8)], (19)

where 7 has been eliminated by using (13). The
coefficients B,, are determined from (10). That is,
the terms B,, are chosen so that

_ E:OCM exp [—y® exp (iw[4)[2]1H,, [y exp (i7/8)] = 1,
(20)

where C,, = Bs,b,,. At this point, two difficulties
must be overcome. The first, which was mentioned
earlier, is that the right-hand side of (20) has an
unbounded norm on (—oo, o); this fact makes
determination of a convergent series impossiblé by
standard orthogonal function procedures. To rectify
this situation, we replace the right-hand side of (20)
by exp [—Zy?]. By making A small, we can therefore
make exp [—Ay?] arbitrarily close to unity on any
finite portion of the y axis and approximate the
desired condition.

The second difficulty is that the solutions of (11)
are complex-valued functions of the real variable y.
However, the Eq. (11) is not Hermitian (the operator
is self-adjoint, but not real self-adjoint), and we cannot
make use of the orthogonality property of Hermitian
operators. This point can be handled as follows.
Consider (20) with the substitution

£ = yexp (in/8), (21

= 3 Covexp [—21H,(&) = exp [—1£* exp (ima)].
_ (22)

Since the right-hand side of (22) is an analytic function
of & and approaches zero for 4 > 0 as || — o0,
everywhere within the bow-tie shaped region shown
in Fig. 2, we require that (22) be an identity for all
complex values of & in the region.

Since (22) holds for all & in the region described,
the equation must hold in particular for real &. Hence
we may determine C,, using ordinary orthogonality
conditions for the Hermite polynomials. Therefore,

Cy, = —{m*22"(2n)1}"
x f " exp [~ 8 + DIHa(§) dE, (23)
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— T —
~1lL -

F1G. 2. Region of convergence for (22).

where 2’ = Aexp (—in[4), and the factor in front of
the integral is the square of the normalizing factor
for Hermite polynomials. The integral in (23) is
evaluated by using the expansion for H,,:

( l)k(zn) 2n—2k 24
(@ = 3 L2 on 2 GO @9
Thus, we obtain
N 2ngqs -—% ( l)k 1 "k
Con = —27H + ) Igok'(n—k)'(l’+l) '
(25)

Since the series in (25) is part of the binomial ex-
pansion, the expression for C,, may be reduced to
the simple form

(26)

g e
4 e\ 3
Using (26), (20), and (19), we obtain the following
expression for the electric field in the medium:

"’)—%Ez 22%21,);'(1: + %)

X exp [—by,z — y® exp (in/4)[2]
X H,,[y exp (in/8)].

Again, we emphasize that to obtain a nearly constant
magnetic field for a given finite interval of the y axis,
we must limit the size of 4 and hence the absolute
value of A'. If we define impedance in the usual way
as the ratio of the electric field to the orthogonal
component of magnetic field evaluated at z = 0, we
have

'P(y, Z) = _(A’

27

Z o y(y, 0),

where Z = E,/H,. We see that the absolute value of
the impedance approaches zero as y increases, though
the exact manner of this approach requires numerical
evaluation of (28). Using formulas given by Erdelyi,?
we can obtain the asymptotic behavior of the function
in the series. For fixed x and large order of the

(28)

5 A. Erdelyi et al., Higher Transcendental Functions (McGraw-Hill
Book Company, Inc., New York, 1953), Vol. II, Chap. 10,
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Hermite polynomials, we have

Han(%) ~ (= 1)"2™ exp (x}2)0(m + Hx(@m)}2)t
x [J_s[x(am)] + x/[4@m)Ix(@m)t], (29)

where x is a complex variable with unrestricted
argument. Hence, we have

Haly exp (im[8)]
~ (=)m22m(mt exp [1* exp (im/4)/2]
x T(m + 1) exp [Iy| sin (/8)(4m)?]
x {cos [y cos (m/8)(dm)t}
— isin [|y] cos (w/8)4m)}] + O(n~H}. (30)

bo ~ (4m)} exp (im[8), 31

where /6 has been neglected. Using (27), (30), and
(31), we can obtain a typical term in the series for
large n. Thus

W, 2) = —(' + %)-*2

Also,

="
22nb2 (ﬂ)

X exp [—bg,z — eXp(m/4)/2]
X Hy,[y exp (in/8)]

— exp (—im/d)(X + P

o0

_Z_HA%(ya Z)’
(32)

where

As,(y, 2)

= exp [—n log f — 2n}{z exp (in/4) — |y| sin (7/8)}]
x [cos (y cos (m/8)2nt) — i sin (|y] cos (w/8)2nP)]
x [2mI (33)

In (32) and (33),

=0 —=bHEA + ), (34)

and M is an integer large enough for (30) and (31) to
be simultaneously valid. The fact that the terms
Ay, become exponentially small as # — o in (32)
establishes absolute and uniform converggnce of the
series in (27). The series converges most slowly when
z=0. On z = 0 we see that the A,, terms do not
begin to decrease exponentially until » is large enough
for

(m)} > 2|yl sin (=/8)/log |I. (3%)

In addition, we only want to consider y in a range
such that

exp (—4y®) > 0.95. (36)
Equation (36) implies
A < 0.0572, (37)
which implies
|8l ~ 1 —0.14y72, (38)
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Thus, for large y, a large number of terms in the series
of (27) are required if z = 0. Using (38) and (35), we
see that the number of terms required before the
magnitude begins to decrease exponentially is pro-
portioned to y°. Because of this rapid increase in the
number of terms and because of the lack of tabulated
values for the Hermite polynomials with complex
argument, we examine y at y = 0 only. At y =0,
we use the formula

H,,(0) = (—D)™[(2m)![m!]. (39
Therefore,
(3 % < ﬁn(zn)! _
v0,2)=—(4 + P go 2—-—2,,(n by exp (—by,2).
(40)

This series is also poorly convergent when z = 0 as
the terms go down like f”/n with the magnitude of §
close to unity. Rapidity of convergence can be greatly
improved by noting

S=§§= ~log(1 — B) (41)

n=1
and adding and subtracting an appropriate multiple
of S from (40).

III. RESULTS

The result of calculating (0, z) for several values
of 6 and A = 0.001 is shown in Fig. 3. We note that
A~tis a measure of the distance over which the applied
field is constant; in addition 67! is a measure of how
rapidly the conductivity is changing near the origin.
The surface impedance at the origin is proportional
to (0, 0), and we see how this changes in response
to changes in 6. We also can see how the skin-depth
changes in response to changes in §. The electric
field becomes virtually independent of  when 6 < 0.1;
this fact indicates that local conductivity is not impor-
tant when the conductivity varies rapidly. In making
comparisons of skin depth for the case at hand with
the skin depth in a homogeneous conductor, we
consider the way in which z was nondimensionalized
in (8). Thus we define skin depth z; to be that depth
for which

W)(O’ O)I/W(O, Zl)l = e.

For a homogeneous conductor, we would have the
relation

42

7,0t = 2%, (43)

In Fig. 3, the broken lines are the graphs of electric
field in a homogeneous conductor whose conductivity
is 8. The solid lines are the electric field at y = O in a
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F1G. 3. A graph of the electric field at y = 0 versus depth z for
several values of § and A = 102, The broken lines are graphs of
electric field in a homogeneous half-space whose conductivity is d.
The lines marked A and B have correct slope but should have the
values of (0, 0) at 10 and 1.414, respectively, and correspond to
6 =0.01 and 0.5.

medium whose conductivity is 0 + y%. We see that
when 4 is small, there is a great difference between the
homogeneous solid and the nonhomogeneous one.
The difference manifests itself in two ways. First, the
electric field at the surface of the solid is less than the
electric field at the surface of the homogeneous solid.
Second, the electric field decays more rapidly than
in the homogeneous solid. These differences reflect
the fact that the conductivity near y = 0 is consider-
ably different from 4. When ¢ is less than 0.1, the
solution is virtually independent of ¢, indicating the
dominant influence of neighboring material.

When 4 is large on the other hand, (0, z) is nearly
the same as the field in a homogeneous solid.
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In this paper we define the normalized coherence function of arbitrary order (m, n), in a manner
which seems to be a natural generalization of that defined for the second-order coherence function. Both
classical and quantized optical fields are considered and the results are compared. It is shown that for
classical fields and also for quantized optical fields having nonnegative definite diagonal coherent state
representations of the density operator, the modulus of these normalized coherence functions is bounded
by the values 0 and 1. This definition differs from the one recently given by Glauber for quantized
optical fields, where the normalized coherence functions may take arbitrarily large values even for fields
having nonnegative definite diagonal representations of the density operator. Conditions for “complete
coherence,” i.e., those under which the modulus of the normalized coherence function attains the
limiting value 1, are discussed. Some consequences of stationarity and quasi-monochromaticity are also
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discussed.

1. INTRODUCTION

N the analysis of many experiments involving
correlation measurements, the “degree of co-
herence” has played an important role. The degree of
coherence has been defined in the past! by the equation

‘)/(l'l, Iy, T) = 1-‘(rl’ I, T)/{F(rl » T O)F(r2’ Iy, 0)}%’
(1.1)

where

F(rl’ Ty T) = <V*(l'1, t)V(rZa t+ T))t (12)
is the mutual coherence function representing the
correlation between disturbances at the two space-
time points r,, ¢; Iy, ¢t + 7 in a stationary optical
field. Here V(r, f) is the analytic signal representing
the light disturbance? at the point r at time ¢ and ( ),
denotes the time average. The normalization in (1.1)
ensures that :
0< y(r,me, IS L (1.3)

In recent years it has been recognized that, in order
to understand the coherence properties of optical
fields other than those due to a thermal light source,
it is necessary to consider higher-order coherence
functions also. The (m, n)th-order coherence function®

* This research was supported by the United States Air Force
Office of Scientific Research, Office of Aerospace Research. A
preliminary account of this paper was presented at the Second
Rochester Conference on Coherence and Quantum Optics, Roches-
ter, New York, June, 1966.

! M. Born and E. Wolf, Principles of Optics (Pergamon Press,
Inc., Oxford, England, 1965), 3rd ed.,p.501.

2 For simplicity we consider only scalar fields, but a generalization
to vector fields is straightforward; cf. Sec. 6.

3 For obvious reasons, we introduce a pair of indices (m, n) to
indicate the order of coherence. Thus we call I’ or G"-" the
(m, n)th-order coherence function. However, in the special case
when m = n, we call T'""»™ or G"™ the (2m)th-order coherence
function.

is, for example, defined ast
F(m’n)(xl, Tt 9xm;x;{’ e ,x;L)

= V¥(x) - V*xV(D - V), (1.4
where x; and x; denote the space-time points r;, #,
and r; R t;, respectively, and the sharp brackets now
refer to an appropriate average which may be the
ensemble average or, if the field is stationary, the
time average. In quantum description, the (m, n)th-
order coherence function is defined as®

G(m’n)(xl’ e ,xm;xill3 ot ’x';l)
= (A7) - - AP )AP(xD - AP ()
= Tr {fA7(x) - - A2 )AP(x) - - AP(x)),
(1.5)
where p is the density operator® describing the field
and A" (x) and A-)(x) are the positive and negative
frequency parts, respectively, of the appropriate
field operator (see Footnote 2).

In analogy with the second-order degree of co-
herence y(r;, 1y, 7), it is desirable to introduce higher-
order normalized coherence functions, which would
then provide a quantitative measure of higher-order
coherence. Glauber®? has introduced 2nth-order

normalized coherence function® for quantized optical
fields defined by

g(n)(xl5 Tt 5xn;x]’.’ e :x;;)
=Gn(n’n)(xls“.1xn;x{’.' 9x"n (16)
TT{G™ x5 x)G™ Vs 2
=1

4 E. Wolf, Proceedings of the Symposium on Optical Masers (John
Wiley & Sons, Inc., New York, 1963), p. 29.

5 R. J. Glauber, Phys. Rev. 130, 2529 (1963).

¢ In this paper all symbols with a circumflex denote operators.

“ U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965).

8 Cf. also L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965),
Sec. 4.4.
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However, as Glauber already noted, this definition
does not guarantee that |g(")| is bounded between 0
and 1, even for the most common type of optical
fields, namely those generated by thermal sources.
There is hardly any justification, therefore, in calling
a function defined by (1.6) the degree of higher-order
coherence. Moreover, no attempt has yet been made
to define normalized coherence functions of the
arbitrary order (m, n) when m # n.

It is sometimes asserted® that for stationary light
beams the correlation function G'™™ is different
from zero only when m = n. However, this is not so
in general, as can be seen from the discussion given
in a recent paper by Kano.! If, however, the light is
also quasi-monochromatic, the assumption that
G™® js different from zero only when m = n is
reasonable.

We begin by giving a simple proof of the last
statement! and then present an alternative definition
for the degree of coherence of arbitrary order (m, n)
which seems to be a natural generalization of the
usual definition for the case m = n = 1.

2. STATIONARITY AND
QUASI-MONOCHROMATICITY

To see the consequences of stationarity and quasi-
monochromaticity,'? let us expand the field operator
A™(x) in a complete set of plane wave modes:

AP = Ligg deexp {i(k - — ckt)}, (2.1)

where the summation over k is restricted to k values
such that

ky— Ak <k =kl <k + Ak (22)
We may then express G™™ in the form
G(m,n)(x s Xes %)
L%(m+n) ZTr {pd “l.x1 o '. dlm &kl . dk",}
X exp{—-l[kl.rl + -+ k-1,
—ki-ri— =k, 1]
+ ic[kltl + -+ kmtm _ kiti — —k;t;]}
2.3)

9 R. J. Glauber, in Quantum Optics and Electronics, Les Houches,
1964, C. DeWitt, A. Blandon, and C. Cohen-Tannoudji, Eds.
(Gordon and Breach Science Publishers, Inc., New York, 1965),
p. 78; Phys. Rev. 131, 2785 (1963).

10 Y Kano, Ann. Phys. (N.Y.) 30, 127 (1964)

11 Cf. C. L. Mehta and L. Mandel, in Electromagnetic Wave
Theory, Proceedings of a Symposium held at Delft, The Netherlands,
September, 1965 (Pergamon Press, Ltd., Oxford, England, 1967),

1069,

P The main result of this section appropriate for classical
coherence functions has been proved in Ref. 11. We therefore
consider in this section only coherence functions of the quantized
optical fields.

1799

If the field is stationary, G‘™™ must be independent
of the origin of time. Thus, if we replace each ¢,, ; in
the expression on the right-hand side of (2.3) by
i+ 1,1+ t, we require that the resultant expression
be 1ndependent of ¢ Qn taking the space—Fourier

transformation, we then obtain, whenever the
coefficient Tr (,6&,’{1 *** d,,) is different from zero, the
identity

24)

Using (2.2), the left-hand side of Eq. (2.4) is seen to be
smaller than or equal to m(k, + Ak), whereas the
right-hand side is greater than or equal to n(k, — Ak).
We thus obtain the inequality

mky, + mAk > nk, — nAk, 2.5
which, on simplification, gives the inequality
[(m — m)[(m + )| < Akfk,. (2.6)

Inequality (2.6) clearly shows that if the light is also
quasi-monochromatic, i.e., if Ak/k, <1, and if
m # n, then G'™™ will be different from zero only if
m and n are very large. As an example, let us assume
that Ak/ky, ~ 1077; then the inequality (2.6) can be
satisfied for different integral values of m and n only
if m and n are of the order of 107 or larger. Since
coherence functions of such a large order are of no
practical interest, we may safely assume that for
stationary quasi-monochromatic radiation, it is
adequate to consider only even-order coherence
functions G'™™. However, if the field is not quasi-
monochromatic, we must in general also consider
G‘™™ with unequal indices m and n.

3. DEGREE OF HIGHER-ORDER
COHERENCE IN CLASSICAL DESCRIPTION

We define the (m, n)th-order normalized coherence
function by the equation

V(m,n)(xl, T 9xm;x1’s e ’x;n)
DM xy, s s X3 Xp, 0" %5 Xp)
=rn 1/2mpr n 1/2n ° ( )
[Hl <{I<x,-)}'">} [Hl <{1(x;)}">}
j= j=
Here I(x) = V*(x)V(x) is the instantaneous intensity

at the space-time point x and

™) = Tmm(x, -+ x5 %, 00, x). (3.2)
The normalization in (3.1) guarantees that
0 < [P ™™ ey, Xpmy Xt X £ 1. (3.3)

We note in passing that, when all the 2m space-time
points coincide,

y(M.m)(x, TrraXy Xyttt x) =1 (3'4)
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In order to show that (3.3) is true, we make use of
a slight generalization of the Holder-Schwarz in-
equality’®: Given a nonnegative definite function
#({v}), we have, for arbitrary functions f,({v}),
Loy, -, fv{v}) of a set of variables {v} = vy,
Vg, " ", Uy, the inequality

f SN AED - - (o)) dio}

< T1 | [ cteh Lrtapr® d{v}}’t”_l, (35)

where 4, >0(j =1,2,---,N) and X}V A7 = 1.
Relation (3.5) reduces to an equality if and only if the
following conditions are satisfied: Y arg f;({v}) is a
constant, and the modulus of each of the functions
f({vr}) is effectively proportional to each other, i.e.,
there exist some constants o, oy, * * * , oy, and f such

that
S 1Al _ $UD ISl _
oy o ’
and
N
Sargf, = . (36)
If in (3.5) we choose
N=m+ n;
fy=VHx),  Ay=2m, (=12, m);
fm+k = V(XI:)v "/eerk = 2”7 (k = 1, 2> Y n)’

and identify ¢({v}) with the weighting factor' used
in evaluating the averages in the defining equation
(1.4), we obtain the inequality

= X

m ( N 1/2m
< {Hpm,m(xj, XX, .,xj)}
j=1

[DOmm(xy, ey X s Xy,

n 1/2n
y {1'[ (), - XX, e x;)} NER)

=1

13 Qee, for example, G. H. Hardy, J. E. Littlewood, and G. Polya,
Inequalities (Cambridge University Press, Cambridge, England,
1934), p. 140.

14 If the average in Eq. (1.4) is the ensemble average, then the
weighting factor ¢({v}) may be regarded as the generalized ensemble
distribution (which in classical description is necessarily nonnegative)
over the Fourier components {¢} of V(x):

V(x) = _15 2 rgexp litk - ¥ — ckD)].
L 'k

If, however, we are taking time averages in (1.4), so that

’ ’,
l‘(m,n)(xl Sttt X Xyttt Xn)

=1l_m1c 57, drv*ey, 1,4+ 1 Ve, e+ D),

then the weighting factor ¢({r}) may be regarded as the rectangular
function 1/27 for |f] < T and zero otherwise. The set of variables
{v} reduces now to a single variable ¢ and the limit 7'— o0 is taken
at the end of the calculations.
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From the relations (3.7) and (3.1) we immediately
obtain the required result (3.3).

In analogy with second-order coherence theory, we
call ™™ the “(complex) degree of (m, n)th-order
coherence.” The limiting cases of (3.3), namely
[yt = 0 and |y'™ ™| = 1, are said to characterize
complete “incoherence” and complete “coherence,”
respectively, of order (m,n). Whenever m = n, we
call ™™ the degree of (2m)th-order coherence?. The
case |y™ ™| = 1 is thus said to characterize complete
coherence of order 2m.

Let us now examine the consequences of complete
(2m)th-order coherence. It is seen from the definition
that whenever I'™™ “factorizes™ in the form

F(m’m)(x19 e ’xm;x£5 e 7x;ﬂ)
= Un(x) Unx)Up(x1) -+ Uplxh), (3.8)

the normalized coherence function ™™ is uni-
modular:

ytmm| = 1 3.9

for all values of its arguments.

One can show that the converse is also true: i.e.,
(3.9) implies that ™™ (xy, -+, x5 x5, , %))
has the form given by (3.8). For this purpose we
consider the general conditions under which the
relation (3.5) reduces to an equality [i.e., when Eqgs.
(3.6) holds]. Applying these conditions to the present
case of complete (2m)th-order coherence, we see that
whenever |y{™™| = 1, the stochastic variable V(x)
must satisfy, with unit probability, the relations

B0 VOl _ $({o]) Vxa)] _
a(xy) a(x2)
arg V(x) = p(x),

where «(x) and p(x) — p(x’) are not stochastic
variables, and $({r}) is again the weighting factor
used in evaluating the averages in (1.4). If we sub-
stitute (3.10) in the defining equation for '™ we
find that

F(m,m)('xla Ty, xm; x{a T ) Xfm)
— F(m’,,n)(xl, Py Xy Xy, axl)
{m(xl)}%n

x H{U_(xj)a(x;)e—i[ﬂ(a:j)—ﬂ(x;’)]}_ (3.11)
j=1

Since the left-hand side of (3.11) is symmetric in x,
and x,, the function {o:(x,)}*™ must be proportional
to Dmm(x, o« x5 %, , x1). Without loss of
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generality, we can choose the constant of pro-
portionality to be unity, and we thus find that (2m)th-
order coherence implies that

P(m’m)(xly et . xm;x:,l, L sx;'n)
= Un(x) - U, Un(xh) - - Updxl), (3.12)
where

U n(x) = ()=
— {F(m,m)(x’_ XX, x)}1!2mez‘ﬁ(w3. (3] 3)

We may summarize the result which we have now
established in Theorem 1:

Theorem 1: The necessary and sufficient condition
for the case of complete 2mth-order coherence, i.e.,
for the validity of the identity |y™ ™| =1, is that
['t™.m has the factorized form

I‘(m,m}(xh o ,xm;x{, Ty x:'n,)
=Un(x) Unx)Un(x3) -+ UplX).

Let us now consider the effect of complete 2mth-
order coherence on I'™™ when n 3 m. Again if we
substitute (3.10) in the defining equation for '™
and follow a similar argument given above to obtain
a factorization theorem, we find that 2mth-order co-
herence implies that for any n

Ty, e Xy Xy oy X,
=Unx)  Usx)U(x0) - U(x), (3.14)
where

Un(x) = {F(ﬂ’n}(x’ S XX, X)}«\Hﬁeiﬁ(:&’)’ (3.15}
We have thus established Theorem 2:

Theorem 2: Complete coherence to any even order
2m implies complete coherence to all even orders 2n,

If the optical field is stationary, it is known that
complete second-order coherence implies mono-
chromaticity.’® Hence we conclude that the only
field that may be stationary and coherent to all even
orders is a monochromatic field.

In the above discussion, we have not considered
the case of complete (m, rm)th-order coherence when
m # n. For, in most situations of practical interest,
namely for quasimonochromatic stationary optical
fields, I"™™ can for all practical purposes be assumed
to be zero when m # n, as shown in Sec. 2. Further,
it can be shown quite generally that if forall x;, -~ -,

15 ¢, L. Mehta, E. Wolf, and A, P. Balachandran, J. Math. Phys,
7, 133 (1966).
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xm’x;,...’x;

P (Xe, s X X x = 1, (3.16)
then we also have for all x, x" the identity

by X0 = 1

Thus the condition |y™ ™| = 1, m # n, for stationary
fields leads to a contradiction, since this implies
[y B = 1, which in turn implies monochromaticity,
and for such fields ™™ = 0, if m ¢ n.

4. DEGREE OF HIGHER-ORDER
COHERENCE IN QUANTUM DESCRIPTION

In this section we wish to define the degree of
higher-order coherence for quantized optical fields.
The (m, n)th-order coherence function is now defined
by Eq. (1.5). In analogy with (3.1} we define the
normalized coherence function of order (m,n) for
the quantized optical fields by the equation

{m,n) . .

gm"(xla” yxmsxia ax;z)
(m,n) .
Gmn('xl’ 9xmsx],.3

e Hemy n 2 ¥a) 1/2n " (4.1)
{];1 <[i(x;)]m>q} {];! ([f(x;)]" :>q}
Here [(x) = A7(x)A(x) is the operator repre-

senting the intensity at the space-time point x and
colons denote normal ordering, i.e.,

Ly = (AP EyAD ™

and _
G ) = GUemI(x, - -« X3 %, 00, %), (4.2)

It is obvious from the definition that when all the
2m space-time points coincide, we have
g x, -, x5 %, 0, x) =L 4.3)

We will show below that, at least for the fields having
a nonnegative definite diagonal coherent state repre-
sentation?® of the density operator 3, the inequality

0 < 1™ xy, o Xpsxg, L X <1 (44)

¥ The existence of the diagonal representation [Py. (4.5)] was
first observed by E. C. G, Sudarshan [Phys. Rev. Letters 10, 277
(1963)}, who also stressed its universal validity. R, J. Glauber [Phys.
Rev. 131, 2766 (1963)] also noticed the possibility of such a repre-
sentation in some special cases and called it the P-representation,
but he still denies its usefulness in the general case. Sudarshan’s
original formulation of the diagonal representation was somewhat
heuristic and a rigorous mathematical meaning to such a representa-
tion was given later [cf. C. L. Mehta and E. C. G. Sudarshan, Phys.
Rev. 138, B274 (1965); 1. R. Klauder, J. McKenna, and D. G.
Currie, J. Math. Phys. 6, 733 (1965); J. R. Klauder, Phys. Rev.
Letters 16, 534 (1966); C. L. Mehta, ibid. 18, 752 (1967)]. In cases
when ¢({»}) cannot be defined as an ordinary function, the right-
hand side of Eq. (4.6) is to be interpreted as

Niim f SrEHVHx) - -+ VIV - -+ Vix) e},

where the functions ¢{({]), $o{{r}), - - + . P& ({o}), + + +, can be chosen
to be well-behaved functions, such that the sequence of the corre-

sponding density operators fy = j’tiw({v}) [{ohy{{v}] d*{v} converges
(in the norm) to 4.



1802

holds. If we express the density operator 5 in the

diagonal coherent state representation!”
p=[HEnihEN e, @)

then it is well known (cf. references given in Footnote
16; see also Ref. 17) that the correlation functions
G{™™ are expressible in the form

(m,n) sl e '
G (xl, H xm,xl, H xn)

= f BULODVH(xr) - - VExmV(xD) - - - V(X)) d*{0).
(4.6)

Here |{v}) = J]x lve) and |v,) is the eigenstate of the
annihilation operator 4, which appears in the plane
wave expansion of the field operator A% (x) [Eq.
(2.1)], with the eigenvalue v, :

dy low) = vy o), 4.7)

and

V(X) = I_; z vkez(k-r—ckt). (48)
In the case when ¢({v}) is nonnegative definite, the
quantum mechanical expectation value (1.5) can thus
be regarded as an average over a classical ensemble.
In this case we can apply the arguments of Sec. 3,
and we see immediately that all the results of that
section are also valid for the quantum case. In
particular, we have the inequality

0L g™ L L.

However, in the general case when ¢({v}) is not
necessarily nonnegative definite, [g'™™| may not be
bounded between 0 and 1 and, in fact, may take on
arbitrarily large values. We will, however, call gt™"
the complex degree of (m,n)th-order coherence.
Whenever |g™ ™| exceeds unity, it corresponds to a
truly quantum feature of the optical field.

Let us now examine the consequences of complete
(2m)th-order coherence for the general case when
é({v}) is not necessarily nonnegative definite. It is
shown in the Appendix that the coherence function
g'™™ satisfies a nonnegative definiteness condition

(4.9)

* (m,mde (4 . ., (€2 0 ¥ ) IR
a8 ™ (xy i S

,Xp0) >0,
(4.10)

where N is any positive integer, oy, ‘-, ay are
arbitrary complex constants, and for every / (i =1,
2,500, N), xP, -+ xD is a set of m arbitrary
space-time points, 1t is also shown in the Appendix,

M=
M=

i j=1

]
—
ji

17 L. Mande! and E. Wolf, Ref. 8, p. 246.
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following an argument similar to the one given in a
recent paper,!® that relation (4.10), when applied to the
case of fields having complete (2m)th-order coherence,
requires that g™™ must be of the form

(m,m) .
gmm(x19 9xm’xll.s 5x;'n)

= €Xp {_i[f(xls o axm) '_f(xiﬁ e ’x;'n)]}’
(4.11)

where f'is some function of m space-time points.

We now prove the factorization theorem for the
quantum coherence functions. Since the density
operator p is nonnegative definite, we have

Tr {ﬁl:ﬁ(_’(xl) e A9,

G(m,m)(x 7“.axm;x ’“'sx) 7(— m
- 1 0 0 (A( )(xo)) :|
Gim (xo,...’xo;xo’...’xo)
x [ A0+ Ay
G(m’M)x’.-"x;xﬂ‘..’xm) 7 m
- (m m)( ° 0_ ! (A(+)(x0)) }} 2 0’
G ’ (x09.”sx0’x0’.."x0)

(4.12).
with the equality sign holding if and only if

Ay - Ax,)

_ G(m,m)(xl’ Cee X Xg,

20 5 Ay

El xo)
(4.13)
In (4.12) and (4.13), x, is so chosen that

] x()) # 0'

This is always possible in the case of complete (2m)th-
order coherence. Relation (4.12) can be expressed
more simply as an inequality!®:

- {(m,m) .
G ™™ (xg, » Xos X0

G(m,m)(xo, Cee Xl Xg, Tt

IG(m'm)(xl9 e 9xm; x05 T, xO)I2
S G(m,M)(xl’ T, xm;xls T xm)
X G ™™ (xg, 0, X3 Xgs 0, Xo). (4.14)

If we divide both sides of the inequality (4.14) by a
normalization factor, we find that the corresponding
inequality also holds for normalized coherence
functions:

Ig(m,m)(xls Y x'm; xO’ o 3x0)|2
< ™M, X s %)
X g('m,m)(x(), Y XO; xO’ T, xO)‘ (415)

For fields having (2m)th-order coherence, both sides
of (4.15) are equal to unity, so that relation (4.14)
reduces to an equality. In such cases Eq. (4.13) must

18 Inequality (3.14) of Ref. 5.
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be satisfied, and hence we can write
~ M= M (= G(m,m)x s s Xms Xgy 't 5 X Af £~ T(—
AT x) ATV )AT X id) = — ,,,f . > o) A (x)} A7 (X pr)- (4.16)
G ' (xo,"',xOme"’sxo)

Since 47)(xo) and 4(x,,,,) commute, we can use (4.13) once again and obtain the relation

s . . e (m,m) e s s
G(””")(xl,-' s XmsXos axO)Gmm(xm+l’x05 s X095 X0

.5x0)

PAT xy) - - fi(—)(xmﬂ) =

Now since the left-hand side of (4.17) is symmetric
inx;, Xy, " *, Xmy1, we can rewrite (4.17) in the form

ﬁfi‘(ﬂ)(xl) Tt /‘i(_)(xmﬂ)
m+1 G(m,m)(xj’ Xg,' s XoiXg, "

— H *5 Xg) ﬁ{g{_)(xo)}m+l-

{m,m) .
j=1 G e (x()a »%p> X0 5x0)

We deduce from (4.17) and (4.18) that if** “19
AT (x)y™+ # 0,
G ™ Xy, c X3 Xgs "7 5 Xo)
ﬁ G(m’m)(xj,xo, T, Xg3 Xg, T "5 Xo)
N TR TR L

Using the defining equation (4.1), we can rewrite (4.19)
in terms of the normalized coherence functions. We
thus obtain the relation

g(m'M)(xla s X Xgs ’xo)
m
= H g(m'm)(x;'sxm T, XgiXg, Tt T, Xg) (4.20)
Gl

It now follows immediately from (4.11) and (4.20)
that the function f(x,,- -, x,,) appearing in (4.11)
must be expressible in the form

Joxis %) = 2,

where fi(x;) depends only on the variable x;.
Equations (4.21), (4.11), and (4.1) show that if we

4.21)

(6™ xo,

Tty Xg 3 Xg, t

A )™,

(4.17)

"ty xo)}z

have a complete (2m)th-order coherence, we can
write G™™ in the form

G(m,m)(xl, .o ’xm;xi, PP ’x;n)
= Un(x)** Un(dUp(xD) * ** Up(xl), (4.22)
where

Um(x) — {G(""""(x, e XXyt x)}1/2meif1(x).
{4.23)

We therefore conclude that for quantized optical
fields, also whether or not ¢ is nonnegative definite,
the result expressed by Theorem 3 below holds.

Theorem 3: The necessary and sufficient condition
for (2Zm)th-order coherence of the quantized optical
field, i.e., for the validity of the identity jg™™| = 1,
is that G'™ has the factorized form

G(m’M)(xI) e 2 xm;xi’ e ax;n)
= Un(xy) "+ Un)Un(x1) -+ U0

The singular case of fields having just n photon is
excluded.

Let us now obtain a result similar to that expressed
by Theorem 2. Using (4.18) and its Hermitian
adjoint, we can express

GimHmil(x ...

- 4 . a0 4
b xm+la xly » xm+1)

in the form
1,m+1) e . . ’ _ {m+1,m+1 .
G(m+ " (xls ’xm«stis 3xm+l)—" Gm mE )(xo;"',xmxo,"',xo)
m+1 rim,m) e . . v .
N G (x;, Xq, 2 X03 Xgs Tt Xg) G ™Rl Xo, ctt, Xg3 Xg, T 7 * s Xo)
L (m,m) N . . 2
=1 {G (%o, »X0s Xo» > xo)}

m+1

= q U:,+1(x5)Um+l(x;)’
=

{m,m} e . .
:‘a(mo)G (x5, Xo, s Xgs Xos

*, Xo) {G(m+1,m+1)(x0 .
>

(4.24)

*
MREe U = e g+ o,
» » N0y L]

. . e 1/(2m+-2}
* ax()ax(h ,xo)}/ ™ b

'9x0)

(4.25)

and a(x,) is some real function of x, to be determined. Making use of the factorization property (4.22) in

1* We exclude the singular case p{4)(xg)}™** = 0, which corresponds to fields having precisely m photons.
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(4.25) and taking complex conjugates, we obtain the
following expression for U,,.;:

{G(m+1,m+1)(x0 Lttt Xl Xgs " ,xo)}ll(2m+2)

Um(xo)
x e-fa‘w] U (x). (426)

Upia®) = [

Since the coefficient on the right-hand side of (4.26)
should be independent of x,, [—a(x,)] is just the phase
of U,(x,), so that using (4.24), we deduce from
(4.26) that

U, a(%) = ‘ U pia(0)

Um(xo)

Equation (4.24) clearly shows that (2m)th-order
coherence implies 2(m + I)th-order coherence, except
for the singular case when there are just m photons
present in the field. In this case G!™+1™+) = Q, so
that g¢™+L.m+l) has the indeterminate form zero
divided by zero. By induction, we can extend the
argument for any n > m. We may summarize the
result which we have just obtained in Theorem 4.

U,(x). (4.27)

Theorem 4. Coherence of the quantized field to any
even order 2m implies coherence to all even orders 2n
where n > m, except for the singular case of fields
having just n, (some finite number > m) photons. In
this singular case (2m)th-order coherence implies
(2n)th-order coherence, where m < n < n,.

The result obtained above should be compared with
the corresponding result for fields which Glauber
calls coherent to order N. In his definition the fields

C. L. MEHTA

for which

Ig(”)(xl’ : o ,xn;Xi, e ,X;)I = 1

forall n=1,2,---,N,
where g is the normalized coherence function
defined according to (1.6), are called coherent to
order N. Thus coherence to any given order in his
definition automatically implies coherence to all
lower orders. The situation is quite the opposite in
our case. According to the present definition, coher-
ence to any even order can be shown to imply co-
herence to all higher even orders. There is obviously
no a priori reason to prefer one definition to the
other on account of these two different consequences
alone. The main reason for the preference for our
definition to that of Glauber’s is that,in our approach,
the normalized coherence functions are bounded by
the values 0 and 1 for most of the cases of practical
interest, and in those cases for which they exceed
unity they correspond to truly quantum-mechanical
features of the field. It may also be noted that in the
limiting case when all the 2m space-time points co-
incide, the normalized (2m)th-order coherence function
equals unity [cf. Eqs. (3.4) and (4.3)]. We must em-
phasize that our approach is not intended to classify
“orders of coherence.” It is mainly intended to classify
fields which have a certain degree of coherence and
also to compare the degrees of coherence of two fields,
ie., to give a criterion to decide which one is “more
coherent.”

It is worthwhile to mention two other possible
generalizations of (1.1). If in the defining equation
(4.1) we take the normalization constant simply as
the product of mth and ath moments of intensity,
rather than the normally ordered moments, we obtain

5(m,n) . 'y —
gmn(xla sxm,x]l_a sxn) -

It is conjectured that the inequalities

and

G(m,n) s " " s Xy /’...’;l
m N R (xl 1/2mx nxl N z 3 1/2n " (428)
{1_11 <[A‘—’(x,-)A‘+’(xf)]"’>} {g <[A‘-’(x;-)A‘+’<x;)1">}
0L g™ <1, (4.29)
g™ < |gtmm)| (4.30)

hold for arbitrary fields. However, most of the useful properties such as Eq. (4.3) or the factorization theorem,
etc., obeyed by gt™™ are not obeyed by g™™. We have therefore not considered this normalization in detail

in our present discussion.

Another generalization of (1.1), recently discussed by Sudarshan,?® is

(m,n) .
Gm‘n(x19 sxm:xia 3x;L)

(m,n) VY 'y =
s (xla s Xms X1, ’ xn) {G(""""(xl, ...

s Xms X1, "

. (4.31)
S X)G(xG,  xhsx], e, XY

He calls s™™" the “coherence index” of order (m, n). Such a normalization and some of the properties of

20 E, C. G. Sudarshan (to be published).
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the corresponding normalized coherence functions
were first noted by the present author.?! In particular,
it was shown in the above mentioned reference that
for arbitrary radiation fields the inequality

0< |smm| < 1 (4.32)

holds. From the general arguments given earlier in
this section, it can be shown that the limiting case
fst™™] = 1 implies the factorization properties of
G™ and G (except in the singular case when
there are precisely # photons present in the field and
m =n). Thus [s""| =1 implies also |gt™™| =
lg'™™| = 1. For explicit proof and other related
properties, we refer the reader to Sudarshan’s paper.
Although this normalization has the advantage that
{sm)] is always bounded by the values 0 and 1, it
also leads to the relation

ST (e e x Xy, e, X)) =1, (4.33)

which holds whether or not the space-time points
Xy, , X, coincide. Hence the coherence indices
defined in this manner are not quantities suitable for
comparing the degrees of coherence of different fields.

5. DEGREE OF HIGHER-ORDER
COHERENCE FOR GAUSSIAN FIELDS

In this section we derive an expression for the
degree of coherence of an optical field that is governed
by Gaussian probability distribution. Examples
of such fields are blackbody radiation and the
fields generated by thermal sources. For such fields
the higher-order coherence functions are expressible
in terms of second order ones* by means of the
formulas

Imn) =0, m#n, (5.1a)
F(M,M)(xl’ T X3 X, X)

= 3 T, %) T (xy, x2) - + - TN (x50,
' (5.1b)

where Y denotes summation over all m! permutations
psq,-c,r of 1,2, ,m In particular when
Xy = X; = Xy = X, = * -+ = X, We obtain

I‘(m,m)(x’ e X Xyttt , X) = ml {TaD(x, x)}™.

(5.2)

2t C, L. Mehta, Ph.D. thesis, University of Rochester, 1964.

22 . L. Mehta, in Lectures in Theoretical Physics, W. E. Brittin,
Ed. (University of Colorado Press, Boulder, Colorado, 1965),
Vol. VIIc, p. 398; see also I. S. Reed, IRE Trans, Inform. Theory
IT-8, 194 (1962).
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From Egs. (3.1), (5.1), and (5.2) it then follows that
pimn) =0, msn, (5.3a)

P e
- ;11_, D O CREAEER L CA P}

(5.3b)

» 4 R IR £
)xmaxla ’xm)

For the special case of complete coherence we have,
according to Theorem 2,

F(m,m)(xl’ T, xm; xi, T, x;fn) = ]__I U:;(xj)Um(x;)
j=1
' (5.4)
From Eqgs. (5.2) and (5.4) it then follows that

Un(x) = (mD)2"Uy (). (5.5

By Gaussian fields in the quantum mechanical case
we understand those fields for which the diagonal
representation of the density operator ¢({v}) is a
multivariate Gaussian distribution. Since in this case
$({v}) is positive definite, the results obtained in this
section hold also if the classical coherence functions
Imm and ™™ are replaced by the corresponding
quantum coherence functions G'™"™ and g™,
respectively.

6. SUMMARY AND CONCLUDING REMARKS

We have seen in Sec. 3 that the normalized (m, n)th-
order coherence function ™™ of the classical field,
defined by (3.1), has most of the desirable properties
of the “degree of coherence.” In particular, it has the
following properties:
(1) For all pairs of positive integers m, n,
Jytmm] < 1

(2) A completely coherent field of any even order
satisfies the factorization Theorem 1.

(3) Complete coherence to any even order 2m
implies coherenceto alleven orders (Theorem 2).

(4) When all the space-time points coincide, we
have for all positive integral values of m

6.1

The corresponding normalized quantum coherence
function g™™ as defined by (4.1) also satisfies all of
the above properties in the special case of fields
having nonnegative definite diagonal representation.
However, in general, g™" does not satisfy all of the
above properties. In fact we have:

(1) 1g®Y] < 1 always, but, in general, if either m or

n (or both) are greater than unity, [g‘™™| may
exceed unity.

y(mvm)(x’--o’x;x’.-.’x)=1‘
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(2) A completely coherent field of any even order. case the coherence function G‘™™ can be approxi-

2m satisfies the factorization Theorem 3 (anal-
ogous to Theorem 1 for the classical case).

(3) Coherence to any even order 2m implies co-
herence to all even orders 2n, where n > m
(Theorem 4).

(4) When all the space-time points coincide, we
have for all positive integral values of m

,x)=1. (6.2)

It is worth mentioning that when the average
occupation number of photons in the field is very
large (classical limit), it can be shown that the ordering
of the operators 47(x) and A)(x) in defining the
coherence function G™™ is not important. In this

g(m.rr»)(x’ e XX,

mated by averages of antinormally ordered products:

G(m,n)(xl’ e X xi, ceey, x;)
~ Tr {BAD(x) - - APEDAT ) - -+ A (x )}
(6.3)

It is well known that the phase-space distribution
function in such cases is nonnegative definite.?®
Hence, in this limit,

0<L g™ L 1. (6.4)

We remarked earlier in this paper that for simplicity
we considered only scalar fields. A generalization to
vector fields is straightforward. Thus the normalized
(m, n)th-order coherence tensor for the classical
vector fields may be defined as

yz(:?:’:‘) R ,i,,’(xl sttt xm; xll P x’n)
l‘!(m 7.') ,zmu."',in’(xl’“ : ,xm;X{,' ”ax'ln)
— yem m yzn®  (6.5)
:HI":&.m i Xy Xy -,x,)} {IIIP,.;,*;'.‘..,,.M,...,,.,.(x;., .. ,x,;x;,...,x;)}
=
Here 1,2,---, N) are arbitrary complex parameters, and
D et (Xas T X3 Xy, X0 for each i, x{?, x{, -+ x{) is a set of m arbitrary
= (Vil(xl) e V:,,(xm)Vil'(xi) e Vi AxL)) (6.6) space-time points. Since the density operator g is
is the (m, n)th-order coherence tensor (sece Ref. 8, nonnegative definite, we have
p. 244). The subscripts i, -+ ,i,;i;, -+ ,i, label 0<Tr (;‘)‘FTF)
the Cartesian components. The function . )
— ﬂ Tr {pA( )(x(z) . A(—-)(x(z))
I\(m,m)'“" i\ Xgs Ty Xy Xy ) ZZ ! "
= (Vi (x)}™ x AP -« AP},
is the mth moment of intensity associated with the i, % % BEGImM L. @ L g
component of the field amplitude. P e Lo omo s Am I
The corresponding normalized coherence tensors (A2)

for the quantized vector fields are obtained by
replacing ¥ and I in (6.5) by g and G, respectively.

It may readily be seen that these normalized co-
herence tensors also satisfy properties analogous to
those for the case of normalized scalar coherence
functions.
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APPENDIX

In this Appendix we derive the nonnegative definite-
ness condition (4.8) and discuss some of its con-
sequences which were used in the text.

Let

N
F — __zlﬂiAH)(x;'))AH)(x(z')) .

where A“(x) is the positive frequency part of the
field operator, N is any positive integer, g, (i =

- ADOG), (A1

Relations (A2) and (4.1) then give the required
inequality (4.8), viz.,

U * V() (). (D
zz“igm’m(xlzy'. sxrzz’xl s "

xﬁ,’,’)u,- Z Oa

i=1 j=1
(A3)
where
o )l (. N aon) "
= {H Gmm (xzj)" Tt Xy axzj,' ' xl’)} B;.
1=1

Since the parameters §; in (Al) or (A2) are arbitrary,
so are the parameters «; in (A3).

Let us now discuss some consequences of (A3).
For N =1 and N = 2, the inequality (A3) expresses
the obvious relations

g(m,m)(xl, ) xm) 2 Oa

2 C, L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).

'9xm;xla'
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g(m,"‘)(xla Tty xm; xls Tt xm)
X g™kl X Xe, X)
2 lg(m,m)(xl9 Ct s Xms xl" Y x;n)lz, (A4)
which are similar to the inequalities (3.12) and (3.14)
of Ref. 5. For N = 3, the inequality (A3) expresses
that, in addition, the determinant
g(m,m)(x(l); x(l)) g(m,m)(x(l); x(2)) g(m,m)(x(l); x(a))
g(m,m)(x(Z); x(l)) g(m,m)(x(z); x(2)) g(m.m)(x(2); x(a))
g(m,m)(x(a); x(l)) g(m,m)(x(:i); x(2)) g(m,m)(x(s); x(a))
>0, (Aj)
where x now stands for the set of variables x{?,
x#,-+-,x9. In the case of complete (2m)th-order
coherence, we have |g™™| = 1, and hence we can
write
g(m,m)(x(i); x(f)) — {g(m.m)(x(i); x(i))}*’
= €Xp [_iW(x(i)’ x(j))]’ (A6)
where y is real. It can then be seen, on evaluating
the determinant, that (A5) can only be satisfied as

an equality, and we then obtain the relation

P(x®, xB) = p(x®, x0) — p(x®, xV), (A7)
Setting x' =0 (e, x{¥ =x{ =.-+ =x =0,
which is always permissible by suitable choice of the
origin), we finally obtain

P(x®, x@) = f(x®) — f(x®), (A8)
where f(x?) = y(x'9,0) is a function of x'? only.
Hence, from (A6) we find that
g(m,m)(x(i); x(J‘)) = exp {_i[f(x(i)) _f(x(i))]}, (A9)
which, when written in full, gives the required relation
(4.9): viz.,
A O

= exp {_i[f(xla e

’xm;x{5"',x;n)

’xm) —f(xll’ . :x;n)]}‘
(A10)

It may be noted that the results obtained in this

appendix are also true of classical fields and can be

obtained in a strictly similar manner.
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We discuss from a rigorous viewpoint two more-or-less familiar cases where energy-momentum
conservation implies invariance under space-time translations. First, if a closed linear operator on a
Hilbert space has a domain that is invariant under spectral projections belonging to the four-momentum
operators, and if it “‘conserves energy-momentum,” it necessarily commutes with the appropriate
representation of the translations. (Bounded operators, such as the S matrix, are a special case.) At
least for separable spaces, the domain restriction characterizes the closed operators for which the theorem
is true. Second, if a bounded bilinear form between momentum states of m and # particles in a Fock
space (or more generally, a bounded muitilinear form) conserves energy momentum, the corresponding
tempered distribution has a conservation delta function at points where the mass shell is a C manifold;
but no derivatives of delta functions can occur. In this connection, we are led to a result that seems to
be new: the cluster parameters (“‘connected amplitudes™) of a family of bounded bilinear forms, labeled
by (m, n), are also bounded bilinear forms. The two systems, of course, mutually conserve energy
momentum.

SEPTEMBER 1967

I. INTRODUCTION

HAT translation invariance implies momentum
conservation is a familiar example of the relation
between continuous symmetries and conservation

* Presefit address: The University of Michigan, Ann Arbor,
Michigan.

laws, which is classically and elegantly expressed by
Noether’s theorem.! Conversely, to every constant of
the motion corresponds the infinitesimal gener-
ator of an invariance group of the Hamiltonian or

1 E. Noether, Nachr. Akad. Wiss. Goettingen, II. Math. Physik.
Kl., 235 (1918).
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space (or more generally, a bounded muitilinear form) conserves energy momentum, the corresponding
tempered distribution has a conservation delta function at points where the mass shell is a C manifold;
but no derivatives of delta functions can occur. In this connection, we are led to a result that seems to
be new: the cluster parameters (“‘connected amplitudes™) of a family of bounded bilinear forms, labeled
by (m, n), are also bounded bilinear forms. The two systems, of course, mutually conserve energy
momentum.

SEPTEMBER 1967

I. INTRODUCTION

HAT translation invariance implies momentum
conservation is a familiar example of the relation
between continuous symmetries and conservation

* Presefit address: The University of Michigan, Ann Arbor,
Michigan.

laws, which is classically and elegantly expressed by
Noether’s theorem.! Conversely, to every constant of
the motion corresponds the infinitesimal gener-
ator of an invariance group of the Hamiltonian or

1 E. Noether, Nachr. Akad. Wiss. Goettingen, II. Math. Physik.
Kl., 235 (1918).
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Lagrangian?; and for quantum theory in general, we
have the following (presumably) well-known formal
argument. Let |p’) be an “eigenstate’ of the total four-
momentum operators P,, with eigenvalues p,. Let
A be a linear operator that conserves energy momen-
tum, i.e.,

(p'l41p"y =0 for p"sp.

In other words, 4 |p’) is an eigenstate of P with the
same eigenvalue p’, so it follows that

[4,P,] =0.

Hence A is invariant under translation by any space-
time four-vector b:
[4, &P?] = 0.

We see in Sec. 11 that it is a simple exercise to make
this argument rigorous under the conditions stated
in the abstract, including the case where 4 is a
bounded operator, such as the S matrix.3

Actually, the question to what extent the converse
of the energy-momentum conservation theorem is
true has some relevance for elementary particle
physics, where experimental statements are commonly
statements about momentum space, involving only
macroscopic space-time localization. In this situation
the conservation law is verified more directly than the
invariance principle.

Some theorists have argued that this matter of
practice should be given the status of a matter of
principle.* Either they deny the operational signifi-
cance of microscopic space-time® or for some more
conservative reason they propose to base the theory
of strong interactions on momentum space and to
treat space-time as a derived concept.® Of course, if
one advocates this view, he is not thereby prevented
from postulating translation invariance, since micro-
scopic displacements could conceivably have a sense,

2 A. Messiah, Mécanique Quantique (Dunod Cie., Paris, 1960),
Vol. 11, Chap. XV.

2 Although we should not be surprised to learn that the argument
in question is known, we have not succeeded in finding it in the
literature. For the case of the S matrix, H. P. Stapp [Phys. Rev.
125, 2139 (1962)] mentions without proof that translation invariance
and energy-momentum conservation are equivalent. For bounded
operators, the exercise is indeed not only simple but trivial, given
the standard results of the spectral theory.

4 E.g., G. F. Chew, Sci. Progr. (G.B), 51, 529 (1963); H. P.
Stapp in Ref. 3; E. Lubkin, Nuovo Cimento 32, 171 (1964).

5 This strikes us as a radical view because we are not able to
imagine all possible theories by means of which the concept could
acquire an operational meaning. We do not intend by that a value
judgement on the plausibility of theories motivated by such a view.

8 There have been several interesting attempts in this direction,
based on the .S matrix. Among them we mention M. L. Goldberger
and K. M. Watson, Phys. Rev. 127, 2284 (1962); M. Froissart, M.
L. Goldberger, and K. M. Watson, ibid. 131, 2820 (1963); H. P.
Stapp, ibid. 139, B257 (1965); A. Peres, Ann. Phys. (N.Y.) 37, 179
(1966). The last of these contains a more complete list of references.
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even if microscopic space-time does not; but it
seems more in the spirit of things for those who take
the S matrix as the fundamental observable quantity
to postulate instead the conservation law.”

Whether for reasons of practice or principle, we
think there is at least a pedagogical value in spelling
out some of the contexts in which energy-momentum
conservation implies translation invariance, with the
most direct applications being to S-matrix theory.
Because the results are to some extent known, and
because the proofs as well have very likely occurred
to those who have wondered about the question with
enough mathematical curiosity, we make no particular
claim of originality for our rather straightforward
discussion. On the other hand, a rigorous treatment
does lead us indirectly to a potentially useful piece of
information about the S matrix which is new, as far
as we know. Namely, the connected S-matrix elements
in momentum space (cluster amplitudes) are not only
tempered distributions but kernels of bounded
operators.

In Sec. II, we use the spectral theory to formulate
the property of energy-momentum conservation for
operators on a Hilbert space, and for a certain class
of operators we transform the formal argument already
given into a proof of the theorem on translation
invariance. We discuss to what extent the conditions
imposed characterize the operators for which the
theorem is true.

In Secs. III and 1V, we reformulate and prove the
theorem by a different method, for bounded multi-
linear forms on Cartesian products (X, , -+, %, ,
Kn,> 5 K,), where X, is the m-particle subspace
of a Fock space. By “multilinear” we mean antilinear
on each space ¥, and linear on each ¥, . Such
forms may correspond to operators between the
spaces ¥, and ¥, where m = > m; and n = Y n;,
but in general they do not. Whether such a general
situation has a practical application, we do not know,
but the generality costs nothing extra. The second
proof deals directly with transition amplitudes in
momentum space (tempered distributions), and the
idea is to show that energy-momentum conservation
is expressed only by delta functions in the transition
amplitudes, and not by derivatives of delta functions.
This leads at once to translation invariance. We are
careful not to write delta functions at points where
the mass shell is not a differentiable manifold, because
they are not well defined at such points.

In Sec. V we mention that the result extends to the
cluster parameters for momentum space amplitudes.

? This is, for example, the attitude of Stapp. See Ref. 3.
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Although this is a trivial fact, we again follow a
“didactic” route in an attempt to clarify in what sense
it is true. We apply some elementary theorems on
Hilbert—Schmidt operators to find that the cluster
amplitudes corresponding to a family of bounded
bilinear forms are themselves kernels of bounded
operators between the m- and n- particle Hilbert
spaces, which conserve emergy momentum if the
original amplitudes do.

Finally, in an appendix, we prove that, on a
separable Hilbert space, a closed operator commutes
with all spectral projections if and only if it commutes
with the translations. (The “only if” part is valid for
nonseparable spaces as well.) This result is probably
known to mathematicians, since it is only a slight
generalization of the theorem for bounded operators,
but neither the theorem nor its proof seems to be
readily accessible to nonspecialists (such as the
author).

II. FORMULATION, THEOREM, AND PROOF

What do we mean when we say that an operator
conserves energy-momentum? We give ourselves a
Hilbert space ¥ and commuting self-adjoint energy-
momentum operators P,, u = 0, 1, 2, 3, defined ona
common dense submanifold of JX. That a linear
operator on J¢ conserves energy-momentum means at
least that its matrix elements do not connect subspaces
of X belonging to disjoint subsets of the spectrum
of P,.

In other words, let

P= [ puae@)

be the simultaneous spectral decomposition of P,,
where dE(p) is the spectral measure, with support on
the spectrum of P,.* For any Borel set A < R,
consider the projection operator®

E(A) = f dE(p).

The subspace of ¥ belonging to the part of the spec-
trum of P, contained in A is E(A) € = ¥(A). Let 4
be a linear operator on X with domain D(A4), which
we may assume to be dense or not, as we please. Then
we say that A conserves energy—momentum if,

8 Very readable summaries on the “SNAG” theorem are given
by R. F. Streater and A. 8. Wightman, PCT, Spin and Statistics,
and All That (W. A. Benjamin, Inc., New York, 1964), pp. 91-93;
R. Jost, The General Theory of Quantized Fields (American Mathe-
matical Society, Providence, Rhode Island, 1965), pp. 16-17.

® Recall that the Borel sets of R" are the smallest family of sets that
contains all denumerable unions, intersections, and complements of
open sets.
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whatever be the Borel set A or f € D(4), the condition
EQAf=0
implies that
EQQ)Af = 0.

Thus, if fe X(A) N D(4) and g € (D), with A’
and A disjoint, we have the minimum requirement
just mentioned:

(g, Af) = 0.

This equation is equivalent to the definition; for if
f€ D(4) and E(A)f = 0, it follows that f € JE(R* — A).
where R* — A is the complement of A. Then for any
gex

E(A)Af = 0.
We aim to study under what conditions the fact
that A conserves energy momentum implies that it

commutes with all spectral projections E(A), and
hence with all translations

hence

T(b) = f ¢?YdE(p), beR®

To make sense out of such a statement, we have to
know something about the domains of the operators
that occur. Following Riesz and Sz.-Nagy,'® we
define the domain of a product 4,4, to be the set of
all vectors '€ D(4,) such that A,fe D(4,). We write
A, € A, if A, is an extension of A;; ie., D(4,) >
D(4,) and A4,f= A,f for fe D(4,). We say that a
bounded operator B defined on all of & commutes
with 4 if BA < AB. We say that 4 is closed if, when-
ever both f, € D(4) and Af, are Cauchy sequences in
the norm of X, it follows that lim f,, = f€ D(4) and
lim Af,, = Af.

What we actually prove is the following theorem,
which perhaps does not characterize the operators
for which energy-momentum conservation and trans-
lation invariance are equivalent, but which probably
comes close enough for practical purposes.

Theorem A: Let A4 be a closed linear operator on a
separable Hilbert space J€. Then the following state-
ments are equivalent:

(i) A conserves energy momentum, and D(A) is
invariant under spectral projections; i.e., E(A)D(4) <
D(A) for all A;

(ii) E(A)4 = AE(A) for all A;

(iii) T(b)4 = AT(b) for all b.

If ¥ is nonseparable, then we still have (i) <= (ii) =
(iii).
10 F, Riesz and B. Sz.-Nagy, Functional Analysis (Frederick

Ungar Publishing Company, New York, 1955), Chap. VIII, Secs.
114-116.
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The only nontrivial part of the proof is the relation
between the statements (ii) and (iii). Because this
result belongs properly to the functional calculus of
self-adjoint operators, we take it for granted here and
reserve the proof for the Appendix. Certainly its
formal equivalent is a part of the folklore of quantum
mechanics.

We complete the proof of Theorem A by showing
the equivalence of (i) and (i), without assuming that
J is separable (or even that 4 is closed). To prove that
(i) implies (ii), note that, for f€ D(4) and any A,

E(AYAE(RS — A)f = 0,
from energy-momentum conservation. Because

E(A) + E(Rt — A) = 1,
we have

E(A)Af = E(A)AEAY,

AEA)f = E(AYAE(A)Y.

Hence E(A)A = AE(A).

It only remains to show that (ii) implies (i). But that
is trivial. First, E(A)D(A4) = D(A), from the definition
of the expression (ii). That A4 conserves energy
momentum follows at once from (ii) and the definition
of energy-momentum conservation. Thus, the theorem
is proved.

We have not made any restrictions on the spectrum
of P,. For closed operators and separable spaces,
Theorem A says that it is not possible to relax the
condition of the invariance of D(4) under spectral
projections, Whether the domain requirement is
automatically implied in the case of closed operators
by energy-momentum conservation as formulated
here, we do not know; nor are we inclined to worry
about it, The condition that 4 be closed, or at least
have a closure fulfilling the other conditions, seems
essential for the proof in the Appendix of the relation
between (ii) and (iii); but we do not know whether it
can be relaxed. We also do not know whether the
statement (iii) = (ii) is true for nonseparable spaces.

At any rate, the conditions of the theorem seem
sufficiently general for most practical applications in
physics.

M. ALTERNATIVE FORMULATION
IN FOCK SPACE

Of course, nothing more has to be said in order to
apply the theorem to a Fock space. But in that case,
we have constructed another proof, for a certain class
of operators and forms, which we think instructive.
In the first proof, the nontrivial part was contained in
the spectral theory. In the second, the basic mathe-
matical tools are the nuclear theorem for tempered
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distributions,! plus a theorem of Schwartz on the
structure of a distribution with support on a sub-
manifold of some R*.

For simplicity we put ourselves in the relativistic
Fock space F corresponding to spinless particles with
a single mass M > 0. The generalization of the
discussion to Fock spaces with denumerable numbers
of different types of particles with various spins and
nonzero masses is trivial. Thus,

where forn > 1,
3 3
3, = Sym [L2(£1__P_1 &Py , Rsﬂ)],

Wy w,,
o, = ofp) = (M? + p3t >0,

is the symmetrized Hilbert space of momentum-space
wavefunctions of n free particles.

Because each X, , for n > 1, is identified with an
L, space of functions, with a measure that “dominates”
Lebesgue measure (and is dominated by it: the zero
sets are the same), we can give a meaning to the
“support” of a vector feJ,. Namely, let # be any
element in the equivalence class of almost everywhere
equal functions that corresponds to f; we write
hef. Let supp & be the support of 4 in the usual
sense, i.e., the complement of the largest open set
of R*" on which h vanishes. Then define

supp f = ,P, supp h.

If f can be represented by a continuous function
h € f, we have (exercise for the reader)

supp f = supp h.

First we consider bounded operators on &. To
each bounded linear operator B, and to each ordered
pair of spaces (X, , J,), we associate the bounded
bilinear form

B,.(f.8) = {f, Bg),

where f€ X, and g € X,. We say that B,,, conserves
energy momentum if

an(f: g) =0

for all fand g having supports that nowhere satisfy the
energy-momentum conservation equations. More

explicitly, letP = (p,, - -, p,,)and Q = (q;, " * * , g,
Then B,,, vanishes if

(P, Q)esuppf X suppg

i1 1., Schwartz, Théorie des Distributions (Hermann et Cie., Paris,
1959), Vol. II, Chap. VII.
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implies that, for at least one u,

t(P, Q) =3 pt — > gt %0,

where all four-vectors are on the positive sheet of the
mass hyperboloid; e.g., p? = w(p,). We say that B
conserves energy-momentum if each B,,, does.*?

It is not difficult to see that this definition is equiv-
alent to the one given before (in the cases where it
applies). It is perhaps worth remarking that, for the
S matrix, the above statement of energy-momentum
conservation for the transition amplitudes is equiv-
alent to the analogous requirement on the observable
transition probabilities,’® as the reader can immedi-
ately see for himself.

In the next section, we prove again that if B con-
serves energy momentum, it commutes with the
standard unitary representation of space-time trans-
lations defined on . We do it by considering the
tempered distributions B,,, (P, Q), defined by re-
stricting B,,,(f, g) to pairs of functions in the appro-
priately symmetrized Schwartz spaces! (§,,, 8,) of
test functions which are C,, and decrease at infinity
with all derivatives faster than any inverse polynomial.
That we get a tempered distribution on the entire
subspace of test functions in S(R3™*+™) that are
symmetric in the first m and last n three-vectors
follows from!:

(i) the fact that B,, is a bounded bilinear form
(after accounting for the antilinearity of the first
factor)

1B, ) < C A1 g,
where || f|| indicates the scalar product norm in &;

(ii) the fact that the topology of 8, is finer than that
induced from the strong topology of ¥,,;

(iii) the “théoréme nucléaire’” of Schwartz.!®

If B conserves energy momentum, the tempered

distributions B,,, have their supports on the sets.

where
(P, Q) = 0.

12t will generally be obvious how to take into account the case
m or n = 0, corresponding to the vacuum with zero energy mo-
mentum, so we most often do not mention it explicitly.

13 | am indebted to D. Iagolnitzer for drawing my attention to this
point, as well as to the fact that translation invariance of the prob-
abilities does not imply translation invariance of the amplitudes
(although Poincaré invariance does).

1 This simple proof occurred to several other people before it
occurred to the author. In the literature, the question is raised
indirectly by E. H. Wichmann and J. H. Crichton [Phys. Rev. 132,
2788 (1963)), who give a Jucid discussion of the cluster decomposition
property which assumes that the S-matrix amplitudes are tempered
distributions. K. Hepp [Helv. Phys. Acta 37, 659 (1964)] states it as
a fact, without giving the proof. We have found references to the
proof in J. R. Taylor, Phys. Rev. 142, 1236 (1966), and D.
Iagolnitzer, ‘‘S-Matrix Theory and Phenomenological Space—
Time Description,” Saclay preprint (to be published).

15 1. Garding and J. L. Lions, Nuovo Cimento, Suppl. 14, 9
(1959).
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Our second method of proving the translation invari-
ance of B is to show that, on a sufficiently large space
of test functions, B,,, factorizes into a product of a
delta function for energy-momentum conservation
times a ‘“‘tempered distribution” on the manifold
defined by the conservation law. As mentioned in the
Introduction, the essential point is to show that
derivatives of delta functions cannot occur, because
they conflict with the boundedness of B,,, , considered
as a bilinear form.

Before passing to the theorem and proof, note that,
as far as the discussion so far has been concerned,
we have never used the fact that the bound C is the
same for each bilinear form B,,,,; we could just as well
have a family of positive constants C,,, which could
be unbounded for large (m, n), corresponding to a
class of unbounded operators on &. (The “number of
particles” operator is a simple example.) Actually,
we never need to know that B,,, is a bounded
bilinear form; we can do just as well with the weaker
statement that it is a bounded multilinear form which
satisfies

[Bualfr"* " frns 817 - 8 £ Cra IT Ifill llgsll5

with f;, g;€3,. Such forms can correspond to a
larger class of unbounded operators!®; or, on the
other hand, they might not correspond to operators
at all, not even between J, and X, .

In fact, the whole discussion goes through for
bounded multilinear forms of the type

Bml'--m,,nl"'m(fl"..’fr’ 81,"',33)’

where f;€X,, and g,e¥X, . Energy-momentum
conservation is defined in the obvious way, and we
still have the reduction to tempered distributions.
Although we have in mind no particular situation
where such generality might be useful, there is no
reason not to state our result for such cases. 4 priori,
as we see in Sec. V, we would have sajd that the
cluster amplitudes are an example of bounded
multilinear forms on Cartesian products of X, , if the
Hilbert-Schmidt theorems did not tell us that they
are really bounded bilinear forms.

IV. THEOREM FOR MULTILINEAR FORMS

The theorem below is stated for forms. If the
forms come from closed operators on ¥, it extends
immediately to the operators, by linearity and

16 The domain specified is translation invariant, but not invariant
under spectral projections. It follows from Theorem A, with Theo-
rem B in Sec. IV, that if the operators conserve energy momentum,
they are not closed on this domain.
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continuity, modulo questions of domain. Certainly
there is no problem for bounded operators.

Theorem B: Let T(b) be the unitary representation
of space-time translations on &, defined on each
¥ by

[T(b)f)P) = exp ( i ép, : b) ).

If B, ...;,
-
then

Bml---n,[T(b)fls T, T(b)gs] = Bml-“n,(fl’ e

To save writing, the proof is given in detail only for
bounded bilinear forms B,,,,. Very little modification
is needed to extend it to multilinear forms, and it will
hardly tax the reader to provide it himself.

Consider B,,, as a bounded linear transformation
B,,.: X,— X, . Because

T(5)BuT(B) ™ — Byn

ny -~ -n, 18 @ bounded multilinear form on
-, &, ) which conserves energy momentum,

s gs)'

is also a bounded (i.e., continuous) linear transforma-
tion of ¥, into X, , it suffices to prove

(f, T(0)B,,, T(b)7'g) = (f, Bmng),

where f and g are arbitrary elements of two sets of
vectors, each of which spans (by means of finite
linear combinations) a dense submanifold of 3},,,
X, respectively. In particular, we always choose
(f,8)€(8,,8,), with m and n running over the
positive integers.

In order to avoid a possible difficulty about de-
fining delta functions and their rth derivatives of the

form
3

I1 8"[#P, Q)l,

n=0
(where r is a “four-vector” with nonnegative integers
as components) at zeros of ¢ where the Jacobian
matrix has rank less than four, we make one further
restriction on the support of one of the elements, say
g, of (f, g). Namely, if n > 2, we demand that there
shall be no Q € supp g for which all corresponding
mass hyperboloid four-vectors ¢; are collinear; at
least two of the four-vectors are to be linearly
independent. Hepp'” has observed that even the
smaller subspace of functions in 8, with supports
having no two of the corresponding four-vectors
collinear (“disjoint velocities’) is dense in JX,. The
reader may easily verify that, with this restriction, the

17 K. Hepp, Commun. Math. Phys. 1, 7 (1965).
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Jacobian matrix evaluated for # = 0 indeed has rank
four.

Now we consider the tempered distribution
B,..(P, Q), restricted to the open set  of points
(P, Q) where Q satisfies the condition just mentioned.
The support of B,,, in Q is a C,, manifold, which we
denote suppq B,,,, of dimension 3 if m=n=1,
and of dimension 3(m + n) — 4 if m,n > 2. In the
latter case, suppgq B,,, is the set of simultaneous zeros
of the C, functions #(P,Q), which forms a C,
manifold by the implicit function theorem.!8 It is not
difficult to see that suppg B,,, can even be covered by
a finite number of coordinate neighborhoods.

Some theorems of Schwartz?® tell us that, on Q,
B,.. can be written as a finite sum:

B(P, Q) = 3 TT 6“W[1*(P, QIRY(P, Q),

r p=0

where R"  is a “tempered distribution” on suppgq B,,, .
Of course, if m = n = 1, the product in the expression
above runs only over 4 = 1, 2, 3, and the whole dis-
cussion simplifies because the manifold is just R3,

Finally, we smear with test functions (f,g)e
(8,., 8,) satisfying suppf x suppg < Q. This set
of pairs of test functions is invariant under any
translation [T(b)f, T(b)g]l. Since T(b) is unitary, and
since B,,, is a bounded bilinear form, we have

|Bual TB)S, T(B)E) < C NI S lIgH,

with the right-hand side independent of b.

To see the behavior of the left-hand side, we sub-
stitute the decomposition of B, (P, Q). Integrating
by parts, we get

B,..[T(b)f, T(b)g]
= | TT d°p; d°q; 3, 8[1(P, Q)IR};.(P, Q)
ow gt d b P)g(Q) )
(Ot*yw 1T o@)w(a))

1,7

x JT(=1)»

#=0

Suppose that some derivative of a delta function
occurs; that is, there is a term with r # 0 such that
R{7) # 0. Consider the terms of highest homogeneous
order in r. Carrying out the differentiation gives a

18 L. Auslander and R. E. MacKenzie, Introduction to Differ-
entiable Manifolds (McGraw-Hill Book Company, Inc., New York,
1963), Chap. II. Our excuse for sketching the proof of these well-
known facts about the mass shell is that it takes only a few
words, and hopefully makes things clearer. For more details, see K.
Hepp, Helv. Phys. Acta 36, 355 (1963); and 37, 55 (1964); H. P.
Stapp, ““Studies in the Foundations of S-Matrix Theory,” University
of California, Lawrence Radiation Laboratory Report, UCRL
10843.

19 L. Schwartz, Ref. 11, Vol. I, pp. 100-103, applied to Ex. 2, p.
114, and using the temperedness of B,,,.
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polynomial in 5. We can always find a pair (f, g) in
our set (because it is dense) such that the coefficient
of at least one (%o (bY)r+--- (b3 in a term of
highest homogeneous degree is nonzero. As a function
of b, this term cannot be canceled identically by other
terms coming from r of the same or lower order. Thus
the left-hand side of our inequality contains a poly-
nomial of nonzero degree, which cannot be bounded
as a function of b, conflicting with the right-hand
side. We conclude that there are no derivatives of
delta functions.

But then the remaining delta function implies that

Bl T(b)f, T(b)g] = B,..(f, &)
which is what we set out to prove.

V. CLUSTER AMPLITUDES

To avoid a possible point of confusion, we follow
Wichmann and Crichton® in emphasizing that a
large class of amplitudes, labeled in this case by
(m, n), has a cluster parametrization, which is given
by a purely combinatorial algorithm, having very
little to do with the mathematical nature of the
amplitudes involved. The cluster decomposition prop-
erty of the § matrix, for example, is logically
independent from the cluster parametrization. The
relation between the two is rather one of convenience;
the cluster property has an especially simple and
useful expression in terms of cluster parameters.
That, of course, is why cluster parameters are inter-
esting, but we do not assume here that the cluster
property holds, nor, for the moment, that we have
energy-momentum conservation. We seek only to
determine the general structure of the cluster ampli-
tudes for a family of bounded bilinear forms, in the
interest of having as much relevant information as
possible when we apply the theorem on translation
invariance.

To help in defining the cluster amplitudes, we
introduce some notation. To each bounded bilinear
form B,,, we associate a kernel defined by

Boofs 8) = f dP dQB,,.(P, Q)f (P)g(Q),

where dP and dQ are the invariant measure elements
for ¥, and X,. When fand g are in §,, and §_, the
kernel B, (P, Q) is the same as the tempered distri-
bution already considered; but it is also defined as a
respectable mathematical object for (f, g) € (€, , &,).
By the Riesz representation theorem, we may asso-
ciate L, (equivalence classes of) functions B,,,(P, g) €
X,, and B, (f,QeX, to any ge X, and fe X, ;

20 See Ref. 14.
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and we have

Bof, 8) = f dPF(P)B,,.(P, ),

= f dQB,..(f, Vg(Q).

In other words, we may “integrate” in either order.
Cluster amplitudes B¢, for a family of such kernels

may be defined recursively on (m,n) as follows?:
(i) if m or n is zero,

— R¢
an - an;

(ii) if m and n are nonzero,
B,..(P, Q) = 3 11 B;,..(P1,> Q1)s
T i

where I labels the partitions of the variables (P, Q)
into disjoint sets labeled I;, each of which contains
nonzero numbers m; and n, of p’s and q’s. Within each
partition, the natural order is preserved. Solving, we
may write, for i and n nonzero,

B,,(P, Q) = ;77(1 ) I Byind(Pr,» Q)

where 5(I) is a numerical factor that does not concern
us.

As it stands, BS, is well defined as a tempered
distribution, which contains an over-all delta function
for energy-momentum conservation if the B,, do,
and as a bounded multilinear form for finite sums of
products of one-particle wavefunctions. In addition,
we can prove:

Theorem C: The cluster amplitudes B¢, for a family
of bounded bilinear forms are also bounded bilinear
forms. In particular, for m and » nonzero, B:, (P, Q)
is the kernel of a bounded linear transformation from
J, into X, .

For the proof, we may assume that m and n are
nonzero; otherwise the result is trivial. Let us consider
what meaning we may assign to B (P,g) for
g € X, . The plan of the proof is to show that:

(1) this expression is well defined as an element of
&,,, and B:, (f, g), defined in this way for all (f, g) €
(X,,,&,), is a bilinear extension of the form already
defined if f or g is a sum of products of one-particle
wavefunctions;

(ii) the domain of the adjoint of this linear trans-
formation is all of ¥X,,, so that we know from an

i By analogy with the definition of truncated Wightman functions
due to R. Haag, Phys. Rev. 112, 669 (1958). Any other consistent
choice of momentum-dependent, but measurable phases in this
definition would be harmless for our purpose.
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extension of the Hellinger-Toeplitz theorem?? that
B¢, is bounded.

From the definition of the cluster amplitudes, it is
enough to look at typical terms of the form

KXP, g) = f 4Q I Bo(Pr,» U@

To define such a term, we first partition Q into two
disjoint parts, Q;, and the remaining n — n, three-
vector variables, (Qy,, -, Q). Because it is an
L, function, we may consider

g[QIl ’ (Q[a o) = g(Q)

as the kernel of a Hilbert-Schmidt (H-S) operator
from X, _, into X, . Standard theorems on H-S
operators® tell us that the product of the bounded
linear operator B,, , and the H-S “operator” g is an
H-S operator, and that

Kml.n—m(PII: QI’ PR -)
= f dQBpn(Pr,. Q1)ElQs,, (Qu, - - )]

is the kernel of the resultant H-S mapping from
¥n_n, into X, . That means precisely that K, ,_, is
in the L, space of functions of 3(m, + n — n)
variables (always with respect to the invariant meas-
ure).

Thus, we may repeat the process, partitioning the
variables (P, Qz , " - -, Q) into two parts, Q 1, and
the rest, (PIl, Q 5" Q 1,)- Then we find that

Kml.mg,n—nl—m(Pll ’ PI: ’ QIa P ')
EfdQIgBm|n.(PI’ ’ QI.)Kml,n—m(PII ’ QI1 » T .)

is an H-S kernel from the space corresponding to
(P7,, Qy,, - - +,Qy,) into the space corresponding to
P;,, and hence L, in the space corresponding to all
the variables.

Continuing in this way, we find that KI(P, g) is L,
in the nonsymmetrized space corresponding to X,,.
It is clear that we have defined in this way a linear
map K': 3, — X, that is an extension of the multi-
linear form defined trivially for wavefunctions of the

type I1 £4Qy)-
Consider the adjoint of KI. By definition, a vector

fe X, is in the domain of the adjoint if there exists
a vector & € J,, such that

(f, K'g) = (hg)
32 F. Riesz and Sz.-Nagy, Ref. 10, pp. 305-306.

23 N. Dunford and J. T. Schwartz, Linear Operators (Interscience
Publishers, Inc., New York, 1958), Part II, Chap. XI, Sec. 6.

DAVID N. WILLIAMS

for all g € X,,. In our case, we find that such a vector
exists for every f, so that the adjoint is everywhere
defined. The proof is to show that we can calculate
the scalar product on the left-hand side of the above
equation by integrating ﬁl,%t on the dP;, successively
in some order, then on dQ. By the same argument as
before, the P integration defines for us a vector 4;
our only problem is to see that we get the same
scalar product.

First®* we consider the scalar product (f, K’g) as
an iterated integral on P and Q, computed in the
order (beginning at the right)

fdP,l--~fdPIlfdQ,,---fth.

The Q integrations are defined as already described,
and we have used Fubini’s theorem to write the P
integration in iterated form. Next we note that after
doing the integrations on dQ,_ - - dQy, , we have to
integrate the kernel of the bounded operator B,,,
with a function that is L, in Q;, and then with a
function that is L, in Pj, for fixed values of the
remaining variables. We have already observed that,
from the definition of the kernel, we can interchange
the order of these two integrations. Thus, we may
integrate first on dP; dQ;  ---dQ;; and by our
previous argument, the remaining integrand is L, in
®Pr,> > Py, Qy), being a product of two L,
functions. By Fubini’s theorem, we now see that we
get the same scalar product if we do the dQy, inte-
gration last, integrating in the order

fdoz,fdPh > -fsz,fdQ,,,, .. -fth.

At this stage it is not difficult to verify that the
dP; integration can be interchanged successively with
each preceding dQ;, integration, because the P and
Q integrations are decoupled for i # L. Thus we
arrive at the sequence of integrations

f dQ;, f P, - - f dPy, . f Qg -+ f dQy, f dP;,.

Reasoning by finite descent, we repeat the whole
process; and at last we find that the scalar product can
be calculated by integrating in the order

fdedP,l---fdP,,,

where we have used Fubini’s theorem for the last
time to replace the iterated Q integrations by a single
multiple integration. Therefore, the adjoint of K has

4 The reader who treats the following argument as a recipe for
pencil and paper will find it straightforward.
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all of J,, for its domain, and we conclude that K7 is
bounded.

The original linear transformation was defined on
the dense submanifold of J¢, spanned by wavefunc-
tions of the product form. Thus the extension K7 is
unique because it is continuous and, in particular,
it does not depend on the order in which we choose to
do the original Q integrations. We are justified in
claiming that K7 is well defined for each 7, and that
the theorem is proved.

Note that by the same argument the converse of
Theorem C is also true. If the B¢, are bounded
bilinear forms, so are the B,,,.

Now apply Theorem B. It is clear that if the B,
conserve energy momentum, so do the B¢, . In that
case, the cluster amplitudes are translation invariant.
We could reach the same conclusion directly from the
translation invariance of B,,,. '

V1. CONCLUSION

We have verified that energy-momentum conserva-
tion implies translation invariance in a fairly general
class of theories related to Hilbert space, and in
particular for the S matrix. We have also shown that
the cluster amplitudes for a family of bounded
bilinear forms can be discussed in the same frame-
work, as bounded bilinear forms.

As indicated in the title, our hope in this discussion
has been not so much to achieve the virtue of original-
ity as that of clarity. If we have not succeeded in even
this modest aspiration, we hope that the reader will
agree that it is no reflection on the utility or the
simplicity of the mathematical tools that we have

chosen.
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APPENDIX

Here we prove that E(A)A < AE(A) for all Borel
sets if and only if T(b)4 = AT(b) for all translations.?
The proof that the commuting of the spectral projec-
tions with A implies the commuting of the translations
with A4 is rather easy, given some basic results of
measure theory and the fact that A is closed. It is not
necessary in this case to assume that J is separable.

25 Note that T(b)4 < AT(b) for all translations implies by

definition that T(b)D(4) < D(A4), and hence from the group
property that T(b)4 = AT(b).
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The proof of the converse for separable X is a
little more delicate. Modulo a straightforward reduc-
tion, our discussion imitates an argument of Sz.-
Nagy,2¢ used in the proof of Stone’s theorem to show
that the spectral projections commute with all bounded
operators that commute with all elements of the
corresponding continuous, one-parameter, unitary
group.

Our basic method of proving the two statements is
to show that each operator in one of the two sets,
labeled by Borel sets or by four-vectors, can be
approximated strongly by finite linear combinations
of operators in the other set, and to use the fact? that
if B, is a strongly convergent sequence of bounded
operators with bounded limit B, and if A4 is a closed
operator such that B,4 < AB, for all n, then
BA < AB.

By means of the functional calculus for bounded
functions of commuting self-adjoint operators (such as
P,), the approximation of the operators in one class by
those of the other can be reduced to that of the ap-
proximation of the corresponding functions. Namely,
let A(p) be a bounded function on R4, measurable with
respect to the spectral measure, i.e., with respect to all
the measures (f, dE(p)g); and let 4,(p) be a uniformly
bounded sequence of such functions, which converges
to A(p) almost everywhere with respect to the spectral
measure. Then the corresponding bounded operators

hy = f h.(p) dE(p)
converge strongly to?
h= f h(p) dE(p).

In our case we have to consider two classes of such
functions, composed on the one hand of finite linear
combinations of characteristic functions of Borel sets,

1 if peA,

fp) = {o if peéA,

and on the other hand of finite linear combinations
of exponentials, exp (ib-p), ie., of trigonometric
polynomials. These functions are certainly bounded.
The characteristic functions are measurable with
respect to the spectral measure, because on locally
compact Hausdorff spaces such as R™ the Borel sets
are measurable with respect to any measure; and
continuous functions, such as exponentials, are
measurable with respect to any measure on such
36 F. Riesz and Sz.-Nagy, Ref. 10, p. 383.

27 Ref. 10, p. 302.
28 Ref. 10, Sec. 126.
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spaces.?® Our problem is to show that sufficiently
many functions in each class can be approximated
in the sense described above by functions in the other
class.

To emphasize the point at which the separability of
J enters, we divide the work among three lemmas,
which together add up to the required results. We do
not assume that J is separable unless we say so
explicitly. But we always assume that A is closed.

Lemma 1: If E(A)A = AE(A) for all Borel sets,
then T(b)4A = AT(b) for all b.

Proof: We refer to a basic theorem of measure
theory, according to which any measurable function is
the limit of an everywhere-convergent sequence of
simple functions.®® A simple function is a finite
linear combination of characteristic functions of
pairwise-disjoint, measurable sets. The sequence can
be chosen to be uniformly bounded if the limit function
is bounded.?* Since a continuous function on R” is,
in particular, Borel-measurable, the result follows
from our previous remarks.

Lemma 2: If T(b)A = AT(b) for all b, then E(A)A <
AE(A) for all compact A.

Proof: We have to express £, for any compact A as
the limit of a uniformly bounded, everywhere-con-
vergent sequence of trigonometric polynomials. This
can be achieved by the argument of Sz.-Nagy men-
tioned before.2® First we take a decreasing sequence
{U,} of bounded open neighborhoods of A, such that

2 1 U, = A. Applying Urysohn’s lemma,3? we choose
a continuous, nonnegative, real function f, which is
unity on A, has support in U, (the closure of U,), and
is bounded by unity. Next, we choose an increasing
sequence of compact cubes [, < U,, such that

@, 0,=R% and we let g, be the continuous
periodic function defined by £, in O,,. The uniformly
bounded sequence {g,} converges everywhere to £, .

Finally, we apply Weierstrass’s approximation
theorem?®® to approximate g, uniformly to within 1/n
by a trigonometric polynomial ¢, of the same period.
The sequence {z,} is uniformly bounded and con-
verges everywhere to &, .

29 M. A. Naimark, Normed Rings (P. Noordhoff Ltd., Groningen,
The Netherlands, 1964), Appendix III.

8 P. R. Halmos, Measure Theory (D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1950), p. 86.

8L Ref. 30, Ex. 2, p. 86.

32 Ref. 29, p. 28.

38 Ref. 29, p. 33.
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Lemma 3: Let X be separable. If E(A)4 = AE(A)
holds for all compact A, it holds for all Borel sets.

Proof: Every Borel set is “summable” with respect
to the spectral measure; i.e., (f, E(A)f) is finite for all
f € ¥. According to a basic result of measure theory,
if a set is summable with respect to some measure,
there is a denumerable family of compact sets A, = A
(which can even be chosen pairwise-disjoint) such that
theset R = A — U2, A, is a set of zero measure (the
difference of two sets is the set of points in the first,
not in the second). We want to find a similar family
with the property that the remainder R, which is
a Borel set in our case, has spectral measure zero, i.e.,
such that (f, E(R)f) = 0 for all f.

This equation is true for all vectors in X if and only
if it is true for a dense set in J, because E(R) is a
projection, hence bounded, hence continuous. Since
J is separable, we can choose a denumerable dense
set of vectors f;.

Corresponding to each f;, we choose a decom-
position of A as above, such that

Ri=A—-UAY
n=1
has measure zero for the corresponding measure. It
follows that
@ 0 o0
R=NR,=A-UUAY
i=1 i=1 n=1

is a Borel set which satisfies

fis E(R)f;) =0

for all f;, since any subset of a set of zero measure has
zero measure, and R < R,.

A denumerable union of a denumerable union is
still a denumerable union, so by taking all the compact
sets in each decomposition of A and relabeling them,
we get a denumerable family of compact sets A, < A
such that

E(A) = E(A — R) = E(El An).

Now we have only to note that the characteristic
functions of the increasing sequence of compact sets
Cy = UY_, A, are uniformly bounded and converge
pointwise to &,_r.

Thus, E(A) = lim E(Cy), and the lemma follows
from the property of closed operators that has been
the theme of our discussion.

34 Ref. 29, p. 129,
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A method for determining the angular coefficients of atomic matrix elements is illustrated. The
angular coefficients of matrix elements for r¢;, ri;rl, , ririrs,, rérhrs, and rirlrs ri are evaluated using
single-particle states of definite angular momentum. The use of tensor operators enables a separation
into angular and radial parts. The atomic matrix elements are then expressed as sums over products of
n-j symbols and radial integrals. These sums are restricted by the values of the single-particle state an-
gular momenta, and in all cases the effects of single-particle couplings disappear. The calculation does not
require the use of a particular coordinate system, as is the case for multiple products of spherical

harmonics.

I. INTRODUCTION

ECENTLY much effort has gone into the evalua-
tion of atomic integrals involving functions of

the interelectronic coordinates. This effort has been
motivated by variational treatments of small atomic
systems in which the trial wavefunctions depend ex-
plicitly on the interelectronic coordinates in order to
account for correlation effects. The matrix elements
in question arise from the expectation value of the
Hamiltonian and normalization integrals. They con-
tain parameters to be varied in order to minimize the
energy value obtained for a particular trial wave-
function. Several schemes have evolved which are
capable of handling the integrals for cases in which
2, 3, and 4 electrons are involved. These schemes are
well adapted to single-particle states of spherical
symmetry, but not to states of p, d, f, - - - symmetry.
The evaluation of matrix elements involving more
than three interelectronic coordinates has been
largely developed by Bonham.':2 However, as pointed
out by Roberts,® the method is really limited to
single-particle states of spherical symmetry. Special
cases have been worked out for matrix elements in-
volving one to three electronic coordinates by resorting
to special coordinate systems.® Slater’s tables® are
sufficient for the angular coefficients of two electron
matrix elements, but general expressions for those
involving two or more interelectronic coordinates are
required for a procedure such as Ohrn and Nordling’s.®

* Present address: Louisiana Polytechnic Institute, Ruston,
Louisiana.

1 R, A. Bonham, J. Mol. Spectry 15, 112 (1965).

2 R. A. Bonham, J. Mol. Spectry 20, 197 (1966).

3 P, J. Roberts, Proc. Phys. Soc, (London) 88, 53 (1966).

4 L. Szasz, J. Chem. Phys. 35, 1072 (1961); J. L. Calais and P. O.
Lowdin, J. Mol. Spectry. 8, 203 (1962); J. Hinze and K. S. Pitzer,
J. Chem. Phys. 41, 3484 (1964); E. A. Burke, J. Math. Phys. 6, 1691
(1965).

8 1. C. Slater, Quantum Theory of Atomic Structure (McGraw-Hill
Book Company, Inc., New York, 1960), Vols. I and II.

¢ Y. Ohrn and J. Nordling, J. Chem. Phys. 39, 1864 (1963).

The purpose of this paper is to demonstrate the
use of irreducible tensor operators in the evaluation
of many electron integrals. The matrix elements
treated involve the following operators:

a a ..b a b o..c a b ..C a b .. .d
Fijs Vil TYiitaleis Viilseles Vil

More general examples can be handled without
further conceptual difficulties. The evaluation is ac-
complished by expanding the functions of the inter-
electronic coordinates in terms of tensor operators,
recoupling the operators for functions of several
interelectronic coordinates, coupling the single-
particle states into states of total angular momentum,
and finally evaluating the matrix elements. A complete
separation of the integrals into sums over products
of radial and angular parts is inherent in the procedure.

There are several advantages in the use of tensor
operators in this problem. The methods referred to
above depend on the use of a particular coordinate
system and, for states of other than spherical symmetry,
require the use of multiple products of spherical
harmonics. The use of tensor operators enables one
to construct such products, in terms of recouplings,
without the explicit use of a coordinate system. More
specifically, the work described here follows closely
that of Ohrn and Nordling® except that the angular
parts in Sec. II of their paper are treated here by
means of tensor operators. The radial parts, which
depend on the radial part of the trial wavefunctions,
can then be handled by the methods referred to in
Refs. 1-6.

The main advantage of this method lies in its
ability to express readily the angular parts in terms of
3-j symbols. Some of these involve the single-particle
angular momenta, but the final expressions do not
involve the total angular momenta. The triangular
inequalities of the 3-j symbols and parity considera-
tions greatly restrict the sums, whether finite or
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infinite. These restrictions enable one to determine
systematically those matrix elements that must vanish,
those that involve only finite sums, and those that
involve infinite sums.

II. TENSOR OPERATORS AND THEIR USE
IN EVALUATING ATOMIC MATRIX ELEMENTS

A. Coupling of Single-Particle States

The matrix elements to be evaluated involve
products of single-particle states. These are then
coupled into states of total angular momentum. The
single-particle states are denoted here by |/m,),
where /; is the angular momentum quantum number
and m; is the magnetic quantum number. Product
states |/;m,) |[;m;) are denoted as |/;m;/;m;) and are
abbreviated as |if). Similar notation is used for prod-
ucts of three- and four-electron states. The coupled
states are denoted by |(//;)LM).

The coupling schemes are illustrated below for
products of two-, three-, and four-electron states:

(a) Two electrons

[i) = |limlm;) = % [(LI)LM)((L1 ) LM I Limlm;);
¢Y)]
(b) Three electrons
lijk) = |L;m]lm l.my),

= Z [ BLM)(( 0 LM | 1;ym hamy)

L,lij

X (L) my; l Liml;m;); 2
(c) Four electrons
lijkl) = [Lmd;m Lm ] m)),
=L'%'l”‘|(lill)lil’ (la'lk)ljk s LM)
X (L) ymy, I Lm m )LL) m g, l Im;Lm,)
X ((Lnl W) LM l Lamgl m ). €)

In each case the sums are limited by the appropriate
triangular inequalities. For example, in Eq. (1), L is
limited by |/; — ;| £ L < I; + I; with similar limits
on remaining sums of Egs. (2) and (3). The coefficients
in these expressions are the usual Clebsch-Gordan
coefficients which may be given in terms of the Wigner
3-j symbols?
(L)l omy, I Lim,lym,)
= pemph(h ok e )
m my —mMy
where [/;,] = 2L, + 1.
It should be stressed that the coupling schemes for
the single-particle states are not unique, but must be

7 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).
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chosen so as to be consistent with the later couplings
of the tensor operators.

B. Definition and Properties of
the Tensor Operators

The tensor operators are defined in terms of the
normalized spherical harmonics as®

Cht = (4arf[kDP Y, o(6;» 4. ©)

The subscript i refers to the coordinates of the ith
electron. The properties of tensor operators needed
for this work are reviewed in many places.” 1

One may also define mixed tensor operators as

{crerts = pz CP*C™(npmq | (nm)KQ), (6)
5
where —n < p <n and —m < q < m. The tensor
operators and the mixed operators transform ac-
cording to irreducible representations of the three-
dimensional rotation group.
Of particular importance is the quantity

(CECH)S = (—DMKIE 3 (—1yeckect—, (1)

where —k < g < k. This is related to the scalar
product of two tensors as defined in Ref. 11.

The spherical harmonic addition theorem may
now be written as

Py(cos 6,)) = (—DTIHCICS. ®

In what follows the value of Q for the mixed tensor
operators is not specified if X is zero or if the results
are independent of Q.

C. Expansion of the Operators

The operators for which the matrix elements are to
be evaluated involve products of powers of the inter-
electronic coordinates. The operators may be expressed
in terms of the tensor operators using the spherical
harmonic addition theorem as expressed above. In
these expansions it is assumed, though not necessary,
that the powers of the interelectronic coordinates are
greater than or equal to —1. Several examples are
shown below. The procedure follows closely that
of Sec. II of the article of Calais and Lowdin in
Ref. 4 and Sec. 7.2 of Ref. 7, except that here the
results are expressed in terms of the tensor operators.

8B. R. Judd, Operator Techniques in Atomic Spectroscopy
(McGraw-Hill Book Company, Inc., New York, 1963).

® M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

10y, Fano and G. Racah, Irreducible Tensorial Sets (Academic
Press Inc., New York, 1959).

11 G. Racah, Phys. Rev. 62, 438 (1942).
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Note that
rdy = (r1 + ra — 2ryrs cos 6,52,

=L + (L fFE) — Qrofrs X1 (9)
where x = cos 0y, , r, is the greater of ry and r,, and
r. is the lesser of r; and ry. It is more convenient to
express this as

i = pl(1 + gfz - 2g12x)a/2, (10)

where p, =r, and gy, =r.fr.. The form of the
expansion is

rs = 2_:0(—1)”[P]*ha(1, 2, p{CiC3}°, (11)
where .
1
h(1,2:9) = 40p + D[ AP (1)
For example, if a = —1,
) h_y(1,2; p) = pragle; (13)
orifa=1,
h(l, 2; p) = p1ag? ( g _ ! ) . (14
g 2\ +3 2p—1

The procedure can be extended to other functions of
ry; leading to more complicated radial parts, but to
the same angular form expressed in terms of the
tensor operators.

For products of functions of two or more of the
interelectronic coordinates, one forms the product of
the required number of series. For example,

a3 —z 2( 1> %([pllgD*

p=0 ¢=0
X hy(1, 2; p)y(2, 3; @){CICE}*{CIC3)°, (15)
where 4,(1, 2; p) and h,(2, 3; q) are evaluated as above.
All other cases may be generated by taking products
in this manner.

D. Matrix Elements of the Mixed Tensor Operators

Before evaluating the matrix elements of the tensor
operators, one needs to recouple the tensor operators
in accord with the couplings of the single-particle
states as given earlier. One may then find the matrix
clements of the recoupled tensor operators with
respect to states of total angular momentum and
finally with respect to the single-particle state angular
momenta.

For the examples to be shown in this paper, the
following recouplings are sufficient:

{crezricicgricics)”
= 3 [xIulloXipliqlr)?

U,

x(rxq)rup)(qvp
000(000000)

x{; y ”}{{cucv} 3 (16)
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and
{C”C”}"{C"C y{cici’{cics)’
= 3 BERLIDIPIgrs)

UV, 2 ¥,2
S [ [ [
0 0 0J\0O 0 0O/\O 0 O/\0 0 O
fpn A Y acyeicyy, an
v r XJjliz r X

where ; ;‘ g } of Eq. (16) and the similar forms of

Eq. (17) are 6-j symbols.”-1? The summation indices in
these and many of the succeeding equations are limited
both by the appropriate triangular inequalities and
parity considerations. For example, in Eq. (16), x is
limited by |[r — ¢q| < x < r 4+ ¢ and by the require-
ment that r + x + ¢ be an even integer in order that
{6 g g} does not vanish. Equations (16) and (17)
are verified in Appendix A.

The matrix elements of the tensor operators for
states of total orbital angular momentum are now
given. The method involves the Wigner—Eckart
theorem and follows directly from the procedures in
Refs. 7, 8, and 12. The matrix elements of the re-
coupled tensor operators of Eqs. (16) and (17) are
shown below with derivations given in Appendix B:
((hals) LM {{C¥C3}*CE° (1)L M")

= (= 1), 18 2z, s (LI el 0D

x(l1 u l,)(l2 v l,)(l3 x l,,)
0 0 0o/J\o 0 0/\0 0 O

TR
x{” k ; I, 1, v, (18)
Iy Ly p
Ly l; x
wherea =x+ L+ [; + 1, + 15, and
L I, u
b L v
Ly 1; x

is a 9-f symbol’;
((114123)LM | {{CrCE{CEC3}}° | (Ll W LM')
= (—1)%8r, 1.0, M([II][lz][IS][IA]U 10,100
X [LIhallss]ll:]0 k][x])
% (ll y ll) (12 u l,) (13 v lk) (14 z l,)
0 0 0/\0 0 0/\0 0 O/\O0O O O
L L yi(l, I, u
X {lil lﬂc L} l4 ll z ls
ly Ly x
ha Ly x) Uy 1y x
Whereﬂ=x+L+l”+123+ll+12+13+l4.

12 M. Rootenberg, R. Bivens, N. Metropolis, and J. Wooten,
The 3-j and 6-j Symbols (Technology Press, Cambridge, Massa-
chusetts, 1959).

I, vy,

(19)
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Note that in these and the succeeding equations
the single-particle state angular momenta, as well as
the order of the tensor operators, have been assumed
to be integral. This simplifies the phase factors of Eq.
(18) and succeeding equations. For the atomic matrix
elements the presence of spin is accounted for by
multiplying the orbital part of the single-particle
states by an appropriate spin function and antisym-
metrizing the resulting products. For problems in
which the single-particle state angular momenta are
assumed to be half odd integers, it is necessary to
rederive the phase factors of Eq. (18) and the suc-
ceeding equations. This is straightforward and is not
done here.

III. ATOMIC MATRIX ELEMENTS

The results of Sec. 11 are now combined to find the
atomic matrix elements for those products of powers
of the interelectronic coordinates mentioned in the
Introduction. The results are expressed as sums over
products of angular coefficients and radial matrix
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elements. The angular coefficients are finally ex-
pressed in terms of 3-j symbols. The sums for the
examples included reduce to at most one restricted
infinite sum.

The angular coefficients of (123| ré,ri.re, lijk) and
(1234 rgrire,rd, lijkl) may be found as follows:

(1) Expand the products of powers of the interelec-
tronic coordinates in terms of the tensor operators
as in Sec. IIC;

(2) Express the single-particle product states in
terms of states of total orbital angular momentum as
in Sec. IIA;

(3) Recouple the mixed tensor operators and eval-
uate their matrix elements, with respect to states of
total angular momenta, as in Sec. I1ID.

When these steps are combined, one obtains the
angular coefficients in terms of n-j symbols. The
results for the two matrix elements mentioned above
are given below. The other examples referred to in
the Introduction are treated as special cases of these
two.

(123] ripriarsy lijk) = i >3 (= IILIe U U DY

2,4,7=0 u,v,2 L,112,%,;

(r X q)(r u p)(q v p){r u p}(l1 u l,)(lz v l,-)<l3
X
0 0 0/\0 0 0/\0 0 O0/lv ¢ xJ\O O 0/\0 O 0/\0

L L Iy L

(o 2 N 18
X
m; i T Myl \Myg —M/ \my;

Ly

m my

x lk)<ll I, lm)
0/\my my —my,
L I, u
I, L \{l,; I, L
Iy I, v
me —M/\U; 1, x
e ly o x

X (yazsl ho(1, 25 PIRY(2, 35 @R, 15 7) Iyig)s
where v, refers to the radial part of the single-particle state, |ijk) and

(20

y=pr+aq+r+L+L+me+my+I+h+ L+ x+L

The factor
(Yrasl ha(L, 25 Phy(2, 35 R (3, 15 1) [yi)s
and the similar factor of Eq. (21) below, is the radial portion of the matrix element:

o]
(1234] rigriarigry lijkl) = 3 X >
2,4,7,8=0 u,v,2,,2 L,l14, 123, Lit, 15
(p
X
0

y

(=R

(14 z lz)( L 1 La )(li I Iy )(12 Iy lys )( I, L
X
0 0 0/\my my —my/\m; m, —my/\m, my —my, m; my
l I3 l I, u
he b L\l e L\ L r))* 7|
X L L zi{l, I, v
my My —M/\my my —M/\y my, xl
ha Iy x)\y I x

X (V124 Ba(1, 25 PBo(2, 3; B3, 45 Dhe(4, 15 9) [yise)s

(3131691671 Ea P2 | A A U (TP (A | TS IS AR A A A L)

9 N[V A A [ A
0/\0 0 0/\0 0 0/\0 O O/\v r x)lz » xJ\O 0 0/\0 O 0/\0 0 O

Ly )
— My

(21)
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where
d=p+qg+r+s+my+my+ly+L+L+my+L+L+my+1+x+L

Equation (20) is derived in Appendix C, and Eq. (21) may be derived in like manner.
These equations can be simplified somewhat. One can perform the sums over the total and intermediate
angular momenta and remove the effects of the single-particle couplings. Two equations which facilitate this are

E(I)L[L](ll A L)(l,. I, L)[zi l; L}=(_1)M‘+m2<zi Lo x )( L, x)
L my my, —M/\m; m; —M/\l; l; x m, —m, —m\—m, m, m,

1

. (22)
and variations of
Loh, Ly L L L, \[L, I ho how
1 2 12 i j 5 ij 12 X
> ("1)112[112][11';]( )( ’ ’ )( ’ ) L, I, v
Lz, Uij my m, —myp/ \m; m; —my m;;, —my; —m,
Iy 1; x

- L I u I, I, v v X u
= (1)rHitt . (23)
ml —ml _mu —m2 m] m‘l) m’l) m.’x: mu

Equations (22) and (23) are derived in Appendix D.
The process of summing over L, l;,, and /;; in Eq. (20) is accomplished by using Eq. (22) to sum over
L and Eq. (23) to sum over /;, and /;;. The result is

(123] riygraprs, lijk) = i 3 (=1 x [l LD gl (1, 25 PRY2, 3503, 150) 1y,

2,4,7=0 u, 0,2
rox g\[r u p\fqg v p\(L w I\/, v IN{l; x LN/ —u
X
0 0 0/\0 0 0o/\O 0 0/\0 O 0/\0 0 0/\O O O/\—m, m, m,
l l

v X v x ul\v x u
o S e Y @
—m, m mj\—my m, m)\m, m, m/)\r p g

where € = p + g + r + m; + my + my. In order to put this into a more symmetrical form, one can eliminate
the 6- symbol using Eq. (D1) to give

(123 riargersy lijk) = ii__() _ S 3 (= DAl LI TD
X (7123| ha(15 2’p)hb(2’ 3, q)hc(3’ 1, r) 'yi.’ik)

(r x q)(p u r)(q v p)(l1 u l,~)(l2 v li)(l3 X lk)( I, u l,-)
X
0 0 0/\0 0 0/\0 O 0/\0O 0O 0/\O O O/\O O O/\—m; m, m
l v I 1 x 1 r x q u r q v p
oSS Al I A I A
—my, m, my/\—mg m, m/\—m, my m/\—-m, m, m/\—-m, m, m,

where 4 = m; + my + my + m, + m, + m,. The single-particle states restrict the magnetic quantum
numbers m,, m,, and m, so that only one is independent. In using Eq. (25) it is necessary to recall the
triangular inequalities between u, v, and x from Eq. (24).

To simplify Eq. (21) one uses Eq. (22) once to sum over L and variations of Eq. (23) are used twice to
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sum over lyy, lys, I;;, and /. The result is

= o]
(1234] rioraarasriy lijkl) = z

D,a,7,8=0 u,0,&,¥,2
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3 (= DAl 1 LD

( | a( > & ) ( V0 ) c( s T ) ( L] ) | 3 )( )( D)(: yE )( )
1234 p b q d ikl : : : C

(11 y l,.)(l2 u lj)(l3 v lk)(l4 z ll)(
X
0 0 0/\o o o/\o 0 0o/\0 0 O

( Iy v lk)( 1, z l,)(v X
X
—my m, m/\—mg m, my/\m, —m,

where{=p+q+r+s+x+m+m+ m;+m,.

0 0

L y )( Iy u li)
_ml m mi —m2 mu mj

v

u)(z X y){v X u}{z x y]
mJ\m, m, mJ/\p q Jp s

(26)

One can now use Eq. (D1), the symmetry properties of the 3-j symbols, and Eq. (D5) to put Eq. (26) in the

form

o0

(1234] rgzrgsr§4r21 lijkl) = Z E

P,4,r,5=0 mp,m,,me, Mg u,v,%,2

> (=PIl ) U D

0 00

q v g\fp y S\fr z s
X (Yol ha(l,zzp)hb(z,3;‘1)"43’4;’)’%(4’“S)'?“‘“)(p ) )(r )( )< )

(zl y 1;)(12 u 1,.)(13 v lk)(l4 z
X
0 0 o/\0 0 o/\o 0 o/\o O
(r z s )( I, y li)( 1,
X
m, m, —mJ/\—m;, m, m;/\—m,

where B=m +mg+ m; +my+m, + m, +m,.
The single-particle states again restrict the magnetic
quantum numbers m,, m,, m,, and m, so that only
one is independent.

In using Eq. (27) it is necessary to recall the trian-
gular inequalities between u, v, and x and between
x,y,and z from Eq. (26). This is necessary even though
x does not appear in Eq. (27).

In both Egs. (25) and (27) it is seen that, from
the 3-j symbols, the single-particle state angular
momenta specify and restrict the angular summa-
tion indices u, v, x, y, and z to finite values but not

0 0 0/\0 O O0/\0O O O

0/\m, m, m,/\m, —m, mJj\—m, m, m
u

; l v 1 l z 1
7)( 3 k)( 4 l)’ (27)
m;/\—mz; m, mJ/\—m; m, m,

J

~

my

the radial summation indices p, ¢, u, and s. However,
the triangular inequalities and parity restrictions do
reduce the radial summations to one restricted
infinite sum. Specific illustrations are given in the
next section.

The remaining integrals, referred to in the Intro-
duction, are now shown as special cases of Eq. (27).
Two of these could also be obtained from Eq. (25).
If in Eq. (27) one sets the expoment of ry, equal
to zero, the sum over s is restricted to s = 0.
On evaluating the 3-j symbols containing s, one
obtains

(1234] rirlorse lijkD) = 3 3 (= 0C pallod LMD Grrnssl Bl 25 )2, 35 Dho(3, 45 7) [yised)

D,q,7 U,

o o oo o olls o alls o ol
X
0 0 0/\0 O 0/\O O 0/\0 0 O

( L p l,.)( I, u 1,)( I, v zk)< l, r 1,)
X ;
-m;, m, m/\—m;, m, m;/\—mz m, m/\—my —m, m

Iy v l,c)<l4 r l,)(p u q)(r v q)
0 0 0/\0 O O0/\m, m, m,/\m, —m, m,

(28)
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where C =m; + m; + my + my. In this instance
m,, m,, and m, are restricted to a single value by the
single-particle states and hence the summation over
them is not indicated. Also the indices u, v, p, and r
are limited to finite values by the triangular inequali-
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ties and they in turn restrict the values that g can
assume by the remaining 3-j symbols. Thus all
sums in Eq. (28) are finite.

If one sets the exponent of ry, equal to zero, the sum
over r is restricted to r = 0; Eq. (28) then reduces to

L p
(23] e 1K) = 3 S (= 1) P U0l D szl (L 2: D)2, 3: 9) m,-k)(p * q)( . g 0)

D4 u

x(lz u lj)(la q lk)(l’ u CI)( A
0 0 0/\0 0 0/\m, m, mJ/\—m

0 0 0O

)( P) :)( 3 q k), (29)
m, mg\—my; m, m;/\—mg; m, my

where D = m,; + my + my. Each of the sums is again finite as is true for Eq. (28). Finally, if the exponent
of ry is set equal to zero, g is restricted to 0 and Eq. (29) becomes

12/ rg i) = 3 (= DPARITIID vl h(L, 25 P) )

Be
X
000

where E == m; + m; and the sum is restricted.

IV. DISCUSSION OF THE RESULTS

The results of the five matrix elements are now
discussed. This includes illustrations of the restrictions
on the sums.

Consider Eq. (30). As pointed out by Racahi13
and Calais and Lowdin,* this result for ¢ = —1 can
be put into the form given in Chap. 6 of Condon and
Shortley.!* The result takes the same form regardless
of the value of a. The angular dependence is the same
for any function of ry, with the difference entering
through the radial integral (y;, 2,(1, 2; p) |y;,), which
for @ = —1 is the Slater integral R?(12,;) as given by
Condon and Shortley** and Slater.® If one now uses

Co(lmylm) = (= D)™([LILDE

x (11 14 Ii)( L p ls)’ 1)
0 0 O/\—m m, m,

Eq. (30) can be written as (see Calais and Lowdin,
Ref. 4)

(12 12 1ij) = z C*(lymy;m)CP(1;m lymy)
P

X (yral (1, 2; p) lyi)0(my + my, m; + mj. (32)

The sum over p is restricted by the triangular in-
equalities and parity restrictions of the 3-j symbols.

It is possible to express the angular coefficients of
Egs. (25), (27), (28), and (29) in terms of the

12 G, Racah, “Group Theory and Spectroscopy,” mimeographed
notes of 1951 lectures at the Institute for Advanced Study, available
as a CERN reprint.

W E, U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1953).

I. p l;’)( L 4 l;')( Iy P §5>’ (30)
00 0O/\—my m, m/\—=my —m, m

cr(lymim;) as well as Eq. (30). There may be some
advantage to this form in Egs. (28), (29), and (30),
where all summation indices are finite, as one could
perhaps then use Slater’s tables.® However, in Eqgs.
(25) and (27), where the indices become infinite, there
seems to be no advantage.

To illustrate the restrictions on the various summa-
tion indices appearing in Egs. (25), (27), (28), (29),
and (30), consider diagonal matrix elements for f
electrons. Also take the magnetic quantum numbers
of the single-particle states to be zero. Then the
index p in Eq. (30) can only assume even values
0<p<6, while m, =0. In Eq. (29) m, =m, =
m, = 0, while p, ¢, and u can only assume even values
between 0 and 6. However, they are subject to the
inequality [p — g K u<p+gq. In Eq. (28) m, =
m, = m, = m, = m, = 0, the indices p, u, v, and r
can only assume ¢ven values between 0 and 6, and
the index ¢ is even in the range of 0 < ¢ < 12. Note
that these indices are subject to |p —u| < g <p+u
and |r — v| < g < r + 0. Itis seen that for these three
matrix elements it is sufficient to use Eq. (3.7.17) of
Ref. 7 or Slater’s tables,® if one wishes to introduce
the C?(l;m,I;m,) coefficients.

Bonham! has conjectured that all cases of this kind
lead to finite sums. He characterizes the matrix
elements by diagrams with dots representing electrons
and lines representing interactions. Equation (30) is
represented by

Eq. (29) by



1824

and Eq. (28) by

@ @ @ Q.

1 2 3 4
He suggests that, as long as the diagram contains no
closed portions, all sums must be finite. This is con-
sistent with the results shown here and with other
results worked out by the authors and not shown
here.

The two remaining matrix elements of Eqgs. (25)

and (27) are represented by

3 4 3
A=13
1 2 1 2

respectively. The diagrams are closed and have a
more complicated structure insofar as the angular
coefficients are concerned. Considering again diagonal
matrix elements for f electrons, these equations con-
tain one independent infinite sum. To illustrate, con-
sider Eq. (25). The indices u, v, and x are all even, lie
between 0 and 6, and must satisfy the inequality
|u ~ v] £ x < u + v. If the magnetic quantum num-
bers of the single-particle states are all 0, then m,, =
m, = m, = 0. The remaining indices p, ¢, and r all
range from 0 to oo subject to the inequalities [r — x| <
g<r+xlp—u<uptuand|g—o <p<
g+v. Thus if u=v=x=0, one has p=g =,
whileforu = 0,v = x =2,onehasr =p, |p — 2| <
g < p + 2, etc. Similar restrictions would apply to
Eq. (27). It is seen that in both Eqs. (25) and (27)
there is really a single independent infinite sum due
to the triangular inequalities and parity restrictions.
A simpler illustration of Eq. (25) is given by the
diagonal matrix element for the configuration 1s22p,.
Here u=v=x=0, p=qg=r, my,=m;=m, to
give
(123 riprisrsy lijk) = 2 3 (—1)*™[1]

P my

X (V12al halls 2; PI1y(2, 3; PR3, 15 P) 1)
3 3 2
“( o 85 0 m)loo o)
0 0 0/\—-m, 0 m/\0 0 O
On evaluating the 3-j symbols? and summing over m,,,
this becomes

1
123] rpraars lijk) = ¥ ———
(123] riarasrs, lijk) §(2p+1)2
X (18l Ba(1, 2; PY1o(2, 35 PIRA3, 15 D) [yam)- (34)
Next consider the diagonal matrix element of the

configuration 1s*2sp, for Eq. (27). This leads to u =
v=y=2z=0, p=qg=r=s, and m, = —m, =
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m, = m,. The matrix element then becomes

(1234] ropriariari lijkD) = 3 3 [1]

D My

X (P12sal Ba(1, 25 P2, 35 PRo(3, 4; P)ha(4, 15 P 1yisna)
4 4 2
><(pOp(p 0 p)(lOl). 35)

00 0\m, 0 —m,/\0 O O
On evaluating the 3-j symbols and summing over m,,,
the result is

1
1234 707 ijkl) = S ———
( | P1aFastsara lijkl) g Cp + 1P
X (Y1aaal ha(1, 2; P)e(2, 3; PR3, 45 P)h(4, 15 D) [Vi50)-

(36)

It might be possible to truncate the sums of Eqgs.
(25) and (27). This depends on the form of the radial
integrals. These depend on the power of the inter-
electronic coordinates and the radial part of the
single-particle states. If these radial integrals decrease
sufficiently rapidly with increasing values of the indices,
it may be possible to obtain sufficient accuracy by
terminating the sums. However, a general criterion
for this is difficult to realize.

V. CONCLUSIONS

The previous sections illustrate a procedure for
the evaluation of the angular coefficients of atomic
matrix elements for an arbitrary number of electrons
and interelectronic coordinates using single particle
states of arbitrary angular momentum. The evaluation
is shown for powers of the interelectronic coordinates
greater than —1, but in principle any well-behaved
function expandable in spherical harmonics can be
used.

The tensor operators, when recoupled, completely
separate the angular and radial portions. The separa-
tion enables one to take advantage of the symmetry
inherent in the single-particle product states. This is
reflected in the appearance of the 3-j symbols with
their triangular inequalities and parity restrictions,
The final results are expressed in terms of restricted
sums which are easier to use than multiple integral
expressions when orbital exponents are varied in
energy minimization.

It should also be noted that the effects of couplings
of the single-particle states do not appear in the final
results. The calculation does not depend on particular
coordinate systems, as is the case for multiple products
of spherical harmonics. The points mentioned in this
paragraph are direct consequences of using the internal
symmetry which is independent of the coordinate
system.
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It is true that the greatest interest has, and will
probably continue to be, centered around matrix
elements involving one, two, and three interelectronic
coordinates. However, there are cases where one
needs to go beyond this and include four or more
interelectronic coordinates. (See Refs. 1 and 2.) The
procedure illustrated here enables one to obtain a
complete determination of the angular coefficients for
all cases in an efficient manner, regardless of the
symmetry of the single-particle states. The authors
have evaluated these for several more complicated
cases, including that given by Bonham,? and in each
instance the result can be expressed in the same form.
The conjectures put forth by Bonham' have been
verified for all cases treated.

For those instances which involve one or more
closed loops in the diagrams, the expressions contain
one or more independent infinite sums. However,
as pointed out in Sec. IV, it may be possible to truncate
these sums, depending on the form of the radial inte-
grals. Since these radial integrals depend both on the
radial parts of the single-particle states and on the
function of the radial coordinates introduced from
the expansion of the interelectronic coordinates
(Sec. 1IC), one cannot readily specify a criterion for
this truncation.

APPENDIX A. RECOUPLING OF
THE MIXED TENSOR OPERATORS

A derivation of Eqs. (16) and (17) is given here.
The derivation follows closely the method given in
Chap. 4 of Ref. 8. In deriving these, use is made of
the following simpler recouplings:

(A1)

(crey = ot (P 3 f)en,

{czepp{cicsy® = 3 xP(plla)?
x {{CIC*{C3C5°Y, (A2)
=3(- De[ullollpT

TR

where {q
v

(A3) u, v, and x are limited by the appropriate trian-
gular inequalities and parity considerations.

The first of these, Eq. (Al), is the same as Eq.
(4.5) of Ref. 8. Since a procedure for deriving it is
given there, it is not derived here.

(crezp{cicy)

“ p} is a 6-f symbol. In (Al), (A2), and
rox
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Equation (A2) may be derived as follows: Note that

{CrCs{Cic)’ = 3 (pa)x, (p9)y, 0| (PP)O, (49)0, 0)
Y

x {CICT{CECEY, (Ad)

where ((pq)x, (pq)y, 0 | (pp)0, (49)0, 0) are the matrix
elements of the transformation from one coupling
scheme to the other.” These coefficients are related to
9-j symbols by

p X
((pa)x, (pa)y, 0 | (PP)O, (42)0,0) = [xIly1¥{p ¢ y}-
0 0

[=BESE

(A5)
In the 9-j symbol x must equal y in order to satisfy
the necessary triangular inequality. The 9-j symbol
then reduces to a 6-j symbol with one 0 in it!2:

p 4 (_1)12+a+a: p g9 x A6
00 0 [x] q p 0

The 6-j symbol has a simple algebraic value given
by12

- 1)p+a+w

{5 a 3:=([p][q]*'

On substituting (AS5), (A6), and (A7) into (A4), one
is led to (A2).

Equation (A3) is derived in a similar manner as
follows:

(crea{Cicyy

(A7)

= Z () (pryv, x | ()0, (gr)x, )
x {{CIC{CECE)}, (A9
where the transformation coefficients are again

related to 9-j symbols, but now with one vanishing
argument. This gives

((pg)u, (pr)v, x | (PP)O, (gr)x, x)
) P g u
= (MIIxD}p r o).

0 x x

(A9)

As above, the 9-/ symbol reduces to a 6-j symbol:

P q u
_(=nemrreg o Pl Ao
f,’ i [pllx}? {v r x} (A10)

One now uses (Al) twice on the recoupled operator
of (A8) to get

e ey
(1t 3P 4 A\ (P U T\ rupore
(= D**([u][o]) (0 . 0)(0 ’ 0){(:1 ne,
(All)
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If one substitutes (A9), (A10), and (All) into (A8),
the result is (A3).

One may now use (Al), (A2), and (A3) to derive
Egs. (16) and (17). Equation (16) is derived by letting
4—2,2—3, and p—r in (A2) to give the last two
factors on the left side of Eq. (16) as

{cseCics) = 3 kFella)™

" x ({ciegriciary. (A1)
On substituting this into {C?CZ}{CICH{CIC;}°, one
is led to
{crezy{cics{cics)’
= 3 < alrdHeiene{cicge{cicy). (A13)
The recoupled operator on the right side of (A13)

may be simplified by using (Al) and the fact that
{C?C2}° is a scalar:

{cep{ce{ccyy
= (—1)* $(r X 4q Y0 Tz a0 A
ot (T O erenrieicy ey, A

If one now employs (A3) on the recoupled operator
on the right of Eq. (Al4), the result is

{{cres{cicgecs)’

=g(—1)z[u1[v1[p]-*(; . g)(g : g){: Z i}

x {{CIC°CE)°. (AL5)

On substituting (Al4) and (Al5) into (Al13), one
obtains Eq. (16):

{crep{cicy®{cicsy
= 3 [wlllx)ipllqlir)

u,,%

“loo o o6 o ale g

0 0 0/\O 0 O/\O O 0/\v g x
{{crccsy. (Al6)

Equation (17) may be derived by first using (A2)
to recouple the first and third factors of the left side

and then using (A3) twice to give the recoupling
on the right side.

APPENDIX B. MATRIX ELEMENTS OF THE
RECOUPLED TENSOR OPERATORS

The derivations of Eqs. (18) and (19) given below
follow directly from the material presented in Sec.
3.6 of Ref. 8. Before showing Eqs. (18) and (19), the
matrix element for the mixed tensor operator {C?Cz}°
is given. Note that, as mentioned in Sec. IIB, this is,
to within a factor, the scalar product of two tensors
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of degree x'%. It’s matrix element is
((LI)LM| {CICE}° (11 )L M")
— (_ 1)p+ll+lz+L6L,L’6M,M’[P]—%
I, I, L :
X ( N )(11“ CUELI C3 1) (BD)
L L p
by using Eqs. (3.33) and (3.36) of Ref. 8. The quantity

(L1 €2 \|4) is the reduced matrix element of the set of
operators C?. It’s value, given by Eq. (4.4) of Ref. 8, is

l l;
LI €2 L) = (— DA l,.*(l p ) B2
(LI CY ) = ( )[1][])000 (B2)
Substituting into (B1) gives
(WILM| {CICE}° [(L1)LM")

= (=P IS, 6 A (LI D T
x (11 p li) (12 p l:‘){li l; L}' (B3)
0 0 0/\0 O0 O/, I, p
The procedure to be followed for the operators
{CxC31#{C2}° and {{CYC;}*{CiCy}}° is quite similar.
For the first of these one obtains

((haly) LM| {{CYCE}*C3}° [(J:; )L M)

=(_1)w+lﬁ+l3+L6L,L’aM M'[x]-%{l” lk L}
s hy X

X (hall {CYCE}" L) (sl C5 11T). (B4)

The reduced matrix element (/;,ff {C*C2}® ||/;;) can be
expressed as ((hl)l.| {C¥C33® |(1L1)];;) and, from Eq.
(3.35) of Ref. 8, becomes
(Wl {CYC3}* (DL

L I, u

=([llz][l,-,-][x])i L I oLl CE (LI C3 ).
he Li; x (BS)

If this is substituted into (B4) and (B2) is used three
times, one obtains

(LI)LM| {{CIC}*C3}° (11 )L M)
= (=100, 18 31, 3¢ (LI ) D

y (z1 u 1,.)(12 v 1,.) (13 x zk)
0 0 0o/\o 0o o/\o 0 0

L I u
L, L. Ly|™? ¢
X 17 k } , 18
{13 o [P (18)
12 by X

where
L I, u

112 l,j X
is a 9-f symbol.”
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For the operator {{CYC:}*{CyC3}*}° (B4) gives
(Ll LM| {{CIC{*{CLC3F} (Ll )L M')
= (=1)=thtistly 5 M,[x]_*{l” i L:
' ' ls Ly x
X (Ll {CICE}° 118l {C5C3)° ). (B6)
On using (B5) twice and (B2) four times, one obtains
((halw)LM| {CICH*{C3C5}"}° | (Tl W) LM')

= (=1%8L.10x m-
(A AAITAIATA ARSI EDY
% Ly l,-)(lz u l,)(l3 v l,,)(l‘l z l,)
(000000000000
L I yy(l 1l u
x{;"‘ Lo L} Lol ozl L
m X ha 1y x) \g
where f=x+ L+l + s+ L+ L+1+ 1.
APPENDIX C. DERIVATION OF

THE ATOMIC MATRIX ELEMENTS

The procedure outlined in Sec. III is illustrated
here in deriving Eq. (20). To begin, one expands each
power of the product ré,rlr;, in terms of the tensor
operators as.illustrated in Sec. IIC. Using Eq. (11) or
extending Eq. (15), one obtains

bt = 3 (<1 (pliglir)?
X hy(1,2; p)h(2, 3; @he(1, 35 1)
x {CIC3}{CICH{CiCr)°. (1)
One may then substitute (C1) into (123] r{,ri.rs, lijk)
and separate the radial from the angular parts:
(123] rigrierss lijk)
= 3 (=0 PN D vasal Baihe lyi)

P,q,r=0

x (1231 {CRCE}{CICEI{CICTY lijk). (C2)

Now substitute Eq. (2) on both sides of the matrix
element of the tensor operator, and use Eq. (4). This
matrix element then becomes
(123] {C2CE{CICE{CECT)° lijk)

= 3> (LI

L,L', i3l
X (_ 1)11+lg+l¢+l;+m“+mu~+l.+lu+l)¢+l,'5+M+]l1'

% (ll Iy hLe )(li ¥ L )
my my —myp/\m;, m; —my
% (112 I, L )(li,- I, L )
me my —M/\m; m, —M
X ((Il)he, Is, LM| {C2C3}*{CiCE}°{CiCT}°
X |(LIDks, b, LM). (C3)

(19)

v}

i x
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One then uses Eq. (16) to recouple the tensor operator
and Eq. (18) to find the matrix element of the re-
coupled operator. To complete the procedure Eq. (16)
and then Eq. (18) are substituted into (C3), which
is then substituted into (C2). The result is Eq. (20).
Equation (21) may be derived in the same way.

APPENDIX D. DERIVATION OF
EQS. (22) AND (23)

Equation (22) is a variation of Eq. (2.19) of Ref.
12, which may be derived from Eq. (2.20) of that
reference. Equation (2.20) in the notation used here
reads

(l,. I, L ){l,- I L}
m, m; —MJ\l, I, x

= Y (—l)l’+l‘+x+mz'+m1’+mz( L L x )

my’yms’ My m; m{ —m,

x( 12, l,., x)(lgl I L ) (D1)
—my; m; my/\mg —m; —M

m, — M) , [L], and
(— DL, and sums over L and M:

One next multiplies by (’;1
1

oo e L)

I, 1, L ){li I L}
X
(m,- m; —MJ\l; L, x

(_ 1)L+lg+11+z+mg’+m1'+m,

L,M,my’,;mq’ ,mg

x(l,- I X )( I, l; x)
m;, my —m,)\—my m; m,

N (12 I L )(l1 I, L ) (D2)
my —m; —M/\my my, —M

The right side of (D2) can be simplified by using the
symmetry property’

(12 I, L )
my —my —M
= (_l)ll+lz+L( ll 12 M

_mi

)(m)

m; —M
and the orthogonality relation!?

L l, L )(‘l1 I, L )
-my myg —M/\m;y m, —M

= 6—m1’,m6m{.mg . (D4)

S
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Equation (D2) then reads

Z(—l)L[L](rf;I b L)

LM m, —M

(li I, L ){li 1 L:
X
m, m; ~MJ\; I, x

—_ Z (_l)a:-i-mrl"mz
Iy 1

( li ll ) (
X
m, —m m, — Ny

where use has been made of the fact that the single-
particle state angular momenta are all integral. For
the examples included in this paper the single-particle
state angular momenta are assumed fixed. Thus all
of the magnetic quantum numbers in (DS5) are fixed
and the sums over M and m, can be dropped, giving
Eq. (22).

Equation (23) is derived by three applications of
Eq. (22). One first expands the 9-f symbol on the
left side of Eq. (23) using Eq. (6.43) of Ref. 7:

; "), (DS)

m; m,

hokoy L1, 1

P .
: L

ly 1; x

W. H. HEINTZ AND R. L. GIBBS

where (—1)*” =1 since w is an integer. If this is

substituted into the left side of Eq. (23),

Iy Ly )
my; —my,
I, L

m; m; —my/ \My; —My, —M,

y {11 Iy lm“li L lu}{“ v "}. (D7)

L; x willy, w o)]lw L 1

s <—1)12[1121[1,-k1[w1( ,f,

le, liw

Using the symmetry property’
Iy x

(lii ) — ( x li:i 112 ) (D8)
m;; —m, —m, m;; —My,

on the third 3-j symbol of (D7), one can sum over /;,
to give

3 (= 1ywtmrtm [l,-j][W](;:' " liji,-)

Lijsw ;, m; —m

x(l1 x w)(l,.,- I, w)
my M, —My/ \—my; my, m,

% {li I li,.}{u v x}

I w ofw 1, 1)

Repeating this two more times gives the right side
of Eq. (23).

—Mys

(D9)
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An expansion in inverse powers of the energy (usually fractional powers) of the WKB phase shifts &,
produced by repulsive potentials, singular at the origin, has been derived. In most cases this expansion
is valid for angular momenta ! < Imax, Where /max increases with energy. For large / a power series
expansion in the “coupling constant” g is developed. The two regions of validity complement each
other and sometimes even overlap. The potentials considered have an r~*, p > 1, singularity and a k™,
m < 2,energy dependence. Define ¢ = p + m — 2; then for ¢ > 0, the case of strong interaction, we
get &, ~ —(gk9/7, when k — oo, The constant of proportionality is independent of /. However, the
next term in the expansion depends on /. For ¢ = 0, the case of intermediate interaction, &, becomes
independent of energy when k — o, but it depends in a complicated way on both g and /. Finally, for
g <0, the case of weak interaction, §; ~ —gk*(l + H* %, p > 1.

I. INTRODUCTION

N recent years it has been tried with some success
to explain high-energy phenomena, such as

P — p and 7 — p scattering, by the optical model'—®
or the similar potential model* approach. In order to
apply these models thoroughly, one is interested to
know as much as possible about the analytic behavior
of the phase shifts d,(k,g) as functions of energy,
coupling constants, and angular momenta. Generally,
the potentials used are complex functions. The high-
energy phase shifts due to potentials, either real or
complex, which are not singular at the origin, have
been dealt with® before. In this paper we discuss the
high-energy behavior of the partial-wave scattering
phase shifts produced by repulsive potentials which
are singular at the origin. Phase shifts produced by
singular but complex potentials, like those used in
Tiktopoulos’s paper, will be discussed in a later com-
munication. Calogero® and Bertocchi, Fubini, and
Furlan? have discussed before the high-energy phase
shifts due to a repulsive potential of the kind
V(r) ~ (1/r)p with p > 2. They found the dominant
terms of the expansion of d,/k in powers of k—2%/?,
where k is the momentum of the scattering particles.
These terms do not depend on the angular momentum
/, and therefore their method yields good approxi-

* This work is based partly upon the M.S. thesis of the first
author submitted to the Department of Physics, Technion-Israel
Institute of Technology.
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mations to the phase shifts as long as one deals with
their numerical calculation only. However, when one
seeks the calculation of the scattering amplitude, those
terms which depend on / are the most important ones,
since it is necessary to sum up all the partial-wave
l-dependent amplitudes.

The purpose of the present paper is to derive
explicit expressions for the phase shifts at high energy
which are valid for all angular momentum states. To
be definite, we assume the potential to be of the form

V(r, k) < g(k) - r=? - F(r), M

where p > 1, the positive function F(r) is either
constant or a rapidly decreasing smooth cutoff
function with F(0) # 0, and g > 0 is a dimensionless
coupling constant which might depend on the energy
according to g(k) = gk™. It has been pointed out®
that, in a Schrodinger potential model, it is reasonable
to assume that V(r, k) diverges as k* — oo at least
linearly® in k. We therefore pay special attention to the
case m = 1, which is dealt with in Sec. III. The more
general case is discussed in Sec. IV.

The basis of the present calculation of the partial-
wave scattering phase shifts is the WKB approxi-
mation, which, as has been shown explicitly in Ref. 6,
is very good in the high-energy region for potentials
of the kind considered here, even for the case of s-wave
scattering.

It is well known that the perturbative approach,
i.e., a power series expansion of the phase shift in g,
breaks down for singular potentials with p > 2. The
physical reason is simply the fact that, for these
potentials with g < 0, the scattered particle falls into

8 Y. Nambu and M. Sugawara, Phys. Rev. Letters 10, 304 (1963).

® The m = 1 case may also be considered as a Schrédinger model
with an energy-independent potential in which the relativistic depen-
dence of the mass has been taken care of.
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the attractive core. As has been pointed out before,°
the mathematical reflection of this fact is the diver-
gence of the phase shift as function of g when g
approaches the negative axis, g < 0. Although the
exact phase shift diverges, it is interesting to observe
that the phase shift calculated according to the WKB
approximation does not diverge under the same
circumstances, provided [ > I, , where /;,;, depends
on energy. In other words, for given energy it is
always possible to find a whole range of angular
momenta for which dwgp is expandable in a power
series of g. This is shown in Sec. IL. For small angular
momenta / < I,,, a nonperturbative approach is
adopted. For s waves m =0 and F(r) =1, our
result coincides with that obtained in Ref. 7.

A simple upper limit on the absolute value of the
WKB phase shift is derived in Appendix B. We use
throughout this paper /i = ¢ = 1.

II. THE p REPRESENTATION
AND THE A REPRESENTATION

The starting point of our calculation is the WKB
approximation:

SVEB( Ay = f w[k? £ _omre, k)]

- f [kz ]dr, @

where M is the mass of the scattering particles,
A=1+1%, and p= Ak is the classical impact
parameter. The lower limit r, is the zero of the
corresponding integrand. Let us assume now that
m=1, and write MV(r,k) = gkV(r). It is .then
possible for given p to expand the above expression
in a power series* of g/k:

b=k g( ) 3"(p). )

We refer to this expression as the p representation of
the phase shift. Later we discuss expansions in inverse
powers (usually fractional powers, but often terms
proportional to In k appear too) of k where the
coefficients depend on 4 rather than on p. We refer to
this as the A representation of the phase shift. One
finds, provided the potential decreases faster than
1/r at infinity,
_rv(

"= -—f "~ p’)*

and forn > 1,
1 J‘ ®  pdr (a‘r“’)"‘”‘1
—\ V*r). (5
nt 2V — pz)i dr - G

6( L —

18 g Calogero and M. B. De Stefano, Phys. Rev. 146, 1196
{1966). In this paper many references to the problem of scattering
on singular potentials are to be found.

11 In general, we get a power series in gk™2,

@
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The meaning of the operator (dr®/dr)"~! acting on
Va(r) is

Al 4 s apn
dr[ dr {r dr [r dr v (r)):“ } ©
where d/dr appears (n — 1) times. The derivation of
expression (5) is straightforward, although some care
has to be taken because of the divergence of the
integrand at the lower limit. More detail may be
found in Ref. 5, where the first three orders!® are
worked out explicitly. Equation (4) for 6 is the well-
known expression for the phase shift as it appears in
conventional optical model theory. At first glance the
higher-order terms, according to Eq. (3), represent
only a small correction to 6" at high energy. Let us
remember, however, that in the impact parameter
representation of the scattering amplitude one
integrates over p from zero to infinity. Hence the
above statement would be correct provided all the
6t (p) were nonsingular functions of p. In Ref. 5 it has
been shown that this is indeed the case for nonsingular
potentials However, potentials singular at the origin
will give rise to 8(p), which are singular at p = 0.
Moreover, the strength of the singularity increases
with the order n. We thus conclude that a perturbation
expansion of the WKB phase shifts provides an
asymptotic expansion in inverse powers of k; for
nonsingular potentials this holds for every value of p,
whereas for singular potentials (p > 1), this is true
for p > ppin, where pp, is determined by the
potential and by k.
Let us demonstrate these points by two examples.

Example 1:
V() = 1o 0

The parameter p, has been introduced for reason of
dimensions. )

This function typifies all repulsive singular potentials
with p = 2 at high energy. We find

59(p) = —/2pap;

(n) 77% 2\

) == 5()e(S) m>1
2\n oP

We thus conclude that for this particular example the
p representation is valid whenever

P> Pmin = (28/1ok), )

i.e., pmin decreases as k increases. For potential

®

13 For the relativistic wave equation.
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Eq. (7) the phase shift can be calculated in close form
(the WKB approximation coincides with the exact
expression):

8 = dmk{p — [p* + Qglud)lH}. (10)

Obviously expansion of the square root in powers of
g/k is possible only when condition (9) is satisfied. It
is very easy to derive the A representation for Eq. (10).
Introduce A = pk,

8 = §m{d — [22 + (2gk/uo)I},

and expand in inverse powers of k:

(10"

3 t 2\n
o= 30 ) ~20) Gl o0
2\ po 2gk] n=o\n/\2gk
which is the 4 representation for the potential g/u,r®.
Equation (11) is valid only if

A < Amax = (gkIpo)t. (12)

For this particular example the validity conditions for
the two representations complement each other, as
follows from comparison of Egs. (9) and (12).

Example 2: The repulsive Coulomb potential with
cutoff
voy=| "
r) =
0,

Here again it is possible to calculate the WKB phase
shift in close form:

r<R,

13
r>R. (13)

— 7 «in—l nt
6 = Asin @ lz)i + g[in (g* + 4% 1]

— gln2kR. (14)
We realize immediately that the A representation con-
sists of two terms only: one which is independent of k
and one which behaves like In kR. Hence for this
particular potential the A representation is valid for
every value of . On the other hand, the p repre-
sentation is valid only for

p> glk. (15)

III. PHASE SHIFTS DUE TO POTENTIALS
WITH FIRST- AND SECOND-ORDER
SINGULARITIES

In this section we continue to assume that the
potential is proportional to the momentum k, i.e.,
m=1,

A. Simple Pole Potentials

Most of this part deals with the detailed derivation
of the WKB phase shift in the A representation due to
the Yukawa potential,

V(r, k) = (gk/Mr)e ™", (16)

Iny, =0.577- - -
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We define
t = ufk. an

Thus, according to Eq. (2), we get

o 2 —tz}
8k, ) =f (”[1 _ -f;; _ 2g67‘] dx

_f[l

where z,(¢) is the zero of the first integrand and the
integration variable x = kr has been introduced.
Now, as

12 i
- ;} dx, (18)

yx) = (2%x%) + 2g(e7™[x) < 1 19)
for the whole range of integration, it is possible to
expand the integrand of the first integral in a power
series? of y.

We thus obtain

ok, 2) = _2_ — 200 + 2( )" (%) 220

2g J‘oo e—st:e
x —— e —
s=zo (s) (12 ) (o) X278

We are interested in the expansion of ¢ for small
values of t. Repeated integration by parts of the
integral gives rise to the following expansion,
assuming » > 1:

dx. (20)

© e—stac —8iz v—1 _ ( st)r—l
J; = dx = — )'r_zl(v 1 -
v—1
Evm) B((—stz), (21)

where the expansion of the exponential integral
function is given by

E/(—x) = In y,x +z( —x)*

kK
is Euler’s constant. Furthermore, we
need the behavior of z,(¢) for small ¢. By Eq. (18) we
have

(22)

1 —2[z) — 2g(e™z) = 0. +  (23)
Expanding z,(¢) in a power series of £,
a@=a+pttyrt, Q9

and comparing term by term, we find for the first two
ones

a=g+ (g + M}

=——f _—p+@E+
p @ _Hg)*[g (g + 4’1

13 It should be noted that the power series which represents the
function (1 — y(2)t at |y(2)] < 1 is absolutely convergent at all
boundary points of the circle of convergence. See, e.g., K. Knopp,
Infinite Sequences and Series (Dover Publications, Inc., New York,
1956), p. 140, Hence the above series is uniformly convergent, and
interchange of summation and integration is permissible. Obviously,
the series of Eq. (20) converges absolutely.

(25)
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Now it is easy to obtain, from Eqs. (20), (21), and (22),
the first two dominating terms for small ¢:

a(k, ) = g In (yont) + T _g.c
+ Z( l)n( ))‘2"2 ( ) (A_f)(zn s 1)l

(26)
In order to evaluate the infinite sum we first transform

the sum over s into an integral.
The following formula is easily proved:

moin us - ool+xn
—_— =y —_— . 2
s;(s)2n—s—1 ¢ L ( x? )dx @)

Thus, calling u = 2g«/A%, Eq. (26) becomes

7l 22
ok, l)—gln(yoat)+———-cx—2—-
o«

2 2 %
+L1im[f (1 1+x4g)dx
2gm-—>ao u x 12

S

—1 g
g+ )

+ glln (g* + 29} — 1]+ -+ (28)
This result proves, as expected, that the dominating
term at high energy is identical with the phase shift
due to a Coulomb potential. Comparison of the
above result with Eq. (14) shows that the “range” of
the Yukawa potential is equal to (y,u)~!. The fore-
going derivation of the leading term shows that in
principle it is not difficult (although the algebra
becomes more and more involved) to derive the
expansion in ¢ to any order desired. We have calcu-
lated the phase shift up to the second order in ¢:

Ok, ) = (ag + ayt + agt* + -+ )
+ (b + byt + - -
ay and b, are given by Eq. (28), and
ay = —g'In2(g* + 1),
b, = —g’,
12

a; = ’}gﬂ'z(g2 D
+ 15098" + M) In (8" + 1,
by = 18(9¢* + 4.
Naturally, the question arises for what values of 4

is the above expansion valid. This is a difficult
problem, and no attempt is made here to answer this

+ higher order terms in ¢.

= gln }y,t + 4sin

D 1ndy. (29)

- ;) +3¢°In3  (30)
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-question rigorously. We might obtain a crude

estimate as to what the upper limit on 4 is by re-
quiring that in the In ¢ expansion the third term should
be smaller than the second term. We find

A < [(dg/wk]t. €23

Essentially the same condition on A is found by
requiring that the a series should be descending. We
have also calculated the general term in the In 7 series;
itis,n > v >0,

() e

The ratio of two adjacent terms for given »,n — o0, is
given by —2egt. Thus the high-energy condition is
k > 2eug. More details are to be found in Appendix
A. It has been pointed out in Sec. II that the p repre-
sentation should be used for large values of A.
Comparison in Eq. (3) of the second with the first
term again yields the high-energy condition, whereas
the third to the second term gives

A > ~(gk[10p)t. (33)

Thus the two conditions on 4, Eqs. (31) and (33),
overlap.

The foregoing method is certainly not limited to
the Yukawa potential. For example, for the potential

V(r) = e'(‘"')z/r (34

we find that the leading term of the phase shift is
identical with the corresponding one for the Yukawa
potential, except that the range of this potential
“seen” by a high-energy particle is longer by (y,)t
than the corresponding Yukawa range. However, the
higher-order terms are different for the two potentials.
The dependence on ¢ is identical with Eq. (29):

Ok, ) = (@ + ayt+ )
+ (bo + byt + -+ ) In §(po)he.

We have calculated the following coefficients:

(35)

a =lsin‘1-————+ In +}.z)*—1,

0 ( 12),} gl (g 1
by = g, (36)
bl = 0’

by = —3g(3g" + 2%

B. Potentials with Second-Order Singularity

Next we come to the problem of potentials with
second-order singularity (p = 2). Take, for example,
the potential

V(r, k) = (gk/Mper*)e™". (37N
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Then the same procedure which leads to Eq. (20) for
the Yukawa potential gives for the phase shift in the
present case (t = u/k)

8k, 7) = ”7’1 — 20 + i (ﬁ)(—l)"ﬁ"

n n 2gﬂ)3J‘uo e—stz
X === — dx,
s=20(.$) ( 2%t ] Jeatr X
where, for simplicity, we call g/, — g.
z,(¢) is obviously determined by

1 — (A%z3) — Qgftzl)e ™ = 0,

from which the expansion for small values of 7 follows:

3 2 2

z(1) = (L—g—”) —ge + ﬁﬂ‘iﬂ it
t 2(2g)
We use again Eq. (21) for the expansion of the integral.
It is easily verified that to a particular term in the ¢
expansion only certain values of the index s contribute
(for the first two terms only s = n). This is contrary
to the Yukawa case where we had to sum over all
values of 5, 0 < s < n, and thus Eq. (27) had to be
used. We have found the following expansion of the
phase shift for potential (37) (some details of its
derivation are given in Appendix A):

(38)

+ . (39)

8(k, 2) = (%+a1+a2t’}+"-)

+ (bg+ byt + - -)Int, (40)
where
ay = —(gun)?,
bo = —%g,u, (41)
a; = }7A — }gp In (guyg|2¢"),
b, = —3(gw’.

We have also calculated the expansion of the phase
shift for the potential

V(r, k) = (gk/Mugrte " (42)
The result is
ok, A) = (ao/t&) +a; + azt% +oee (43)
with
ay = —(3gumd?,
a, =yl + nigp, (44)

ay = —mi*4Q2gu)t,
where again gf/u, — g has been used. Note that the
expansion of § for V = 1/ur?, Eq. (11), agrees, as it
should, with Egs. (41) and (44), provided we put
¢ = 0. It should also be mentioned that for these
potentials, having the same singularity at the origin,
the dominating terms in the high-energy expansion
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of é are identical. Note also that for potential (42) the
phase shift has no In ¢ dependence. The reason for this
is discussed briefly in Sec. IVB.
As to the upper limit on ¢ and 4 we find the following,.
A general term in the In ¢ series of Eq. (40) is given by
n 2n—v—-1 n
()

i) @2n — 1)! )(n — et

X g" A 1nt, (45)

n—yv

where n > v > 0. It turns out that the ratio of two
adjacent terms for constant v when n — oo is equal
to 3gute®. Thus, irrespective of the value of 4 and »,
the high-energy condition for potential (37) is

k > }erguc. (46)

For potential (42) there is no In ¢ series. However, a
condition very similar to (46) is found from (44) by
putting A = 0. As to A,y , no exact condition has been
found. A glance at Eqs. (41) and (44) shows that it
should be close to that found for the 1/r? potential,
ie.,

A< (2gk//"0)1}-
1V. GENERAL CASE

(12)

In this section we assume a more general energy-
dependence for the potential. In Eq. (2) we put
MV(r, k) = gk™V(r) 47)

with* m < 2 (including negative values). The coupling
constant g is dimensionless, and ¥(r) has the following
form:

V(r) = (1uer))F(r) (48)

with p > 0. The parameter y, has been introduced for

reasons of dimensions. The power ¢ is given by
g=p+m-—2. (49)

We classify* the interaction according to the following
three categories:

q>0,
q=09

strong interaction;

intermediate interaction; (50)

g <0, weak interaction.

In the following two subsections we outline the
general behavior of the phase shifts as functions of the
energy for the above three cases, with two different
“cutoff” functions

1’
F(r) =1 _

e h,

p>1,
(51)

1 According to Eq. (3) and Footnote 11, the p representation
becomes meaningless for m > 2.
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A.Fir)=1

We first deal with the case of strong interaction.
The lower limit z,(t) = kr,, where r, is the zero of
the integrand in Eq. (2), is determined by

1 — (%]z5) — (2g/t*z3) = 0,
where t = pofk. If we define
T = A%(192g)*/?,
we find for small =

z, = MDA +ar+agt+--9)

(52)

(53)
with

a, = 1/p,
a; = (1/2p)(p — 3).

It is easy to show that the coefficient of the jth
order is

a; = (1/p))Py(p),

where P,(p) is some polynomial in p. We note that
the leading term of r,, which classically is the
shortest possible distance between the interacting
particles, is determined by g and not by A. The
reason is that, in the present case, the interaction is
“stronger” than the centrifugal barrier; thus the latter
becomes important only at an energy which is not
extremely high; in other words, only the higher-
order terms in (53) are A dependent. The phase shift
is calculated by the same method as outlined in
Sec. II1. We find, taking (53) into account,

A

s="2_ . 4 i(—n"(%)ﬁ"
2 n=1 n
2 2gV[* dx
Xgo( )(lth)f 2n+(p—2)s’

3 o2 ()EC)

X (1 +ar+ - ')—21‘—(”_2)&}. (54)
2n+(p—2s—1

We see immediately that the expression in the
parentheses is expandable in an ascending power
series in 7. Thus the phase shift is of the following
form:

—_'—EA("

, (33)

which, by (52), gives the general dependence of 4 on
k,g,and A. The leading term is Aindependent. We have
calculated 4, and 4, explicitly; assuming p > 1, we

S. ROSENDORFF

ﬁnd_ B B L 1[® pdx
== 3o () =3

= 3B(1 — 1/p,}), 1 (%6)
=afi=E ()

+3- 1)”() — z( 1)"(*)

n

1
—— ==B@/p,H,
pnrns S el 0% M )

where the Euler function B(u, v) is defined by

B(u, v) = T »)/T(u + »).
Note that the special case p =2, m = 1 has been
treated in Sec. II. For the special case of an energy-
independent potential (m = 0) and s wave (A = %),
the above expression has been derived!® in Ref. 7.
Obviously, Eq. (55) is valid for small values of = only.
In order to know the exact radius of convergence one
has to evaluate all the coefficients A;, which is rather
a difficult task. A rough estimate of the upper limit on
7 or on A is obtained by comparing the first two terms.
Thus

7 < Aof4,
or

i < Cp(g/tq)l/”’ (58)

where
C, = 2[pB(1 — 1/p, $)/B(1/p, D).

We find, e.g., C; = 1.70; Cy, = 1.45.

In order to obtain the high-energy expression for
large values of 1, we apply the p representation.
Inserting Eq. (48) with F = 1 into Eqgs. (3) and (5),
we find

N 8" = (=" ug" o> D, (59)
where
™ (pn — 2)!
2(»—1)71 (P _ 2)n pn — 5 , pneven,
() ()

D, = pn—3)|((p—2)n—1)'

2(p—l)n—2 ( 2 ) 2 )

n! ((p — 2)n)! ’
\ pnodd. (60)

18 There is a slight discrepancy between our value of 4; and the
corresponding one in Ref. 7. This is probably due to the fact that we
use the WKB approximation, whereas in Ref. 7 an improved
WKB approximation has been used.
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The ratio of two adjacent terms for n — oo becomes

6(91}
6(1}—1)

pp/2 1
( )(1»—2/2) ué P

lim

n—+w

Therefore Eq. (3) converges if

4> [pl(p — D — DV7(g/ry > (61)

Comparison with the upper limit, Eq. (58), obtained
by the A representation, shows that the two repre-
sentations complement each other.

Next we come to the intermediate interaction.
Putting ¢ = 0 into Eq. (55), we get

R e ]

which is an energy-independent ascending power
series in A. That the WKB phase shift for intermediate
interaction is independent of energy follows, of course,
directly from the original WKB expression, Eq. (2),
which yields the following expression:

/25
5=-7;—)'—Z +f i)f[(l

(62)

a2 — 2gx0) — 1],

(63)

The upper limit z? is equal to the zero of the square
root. The radius of convergence of (62) is obviously
given by Eq. (58) with ¢ = 0. In order to obtain an
explicit expression of é beyond that value, we apply
again the p representation. Its application, it should be
noted, is independent of the value of g. Equation (59)
together with (60) thus represent a general term of
expansion of & for large A. The lower limit on 4
foliows from (61) with ¢ == 0. Therefore, the p
representation is complementary to Eq. (62).

The explicit expression of d in the case of the weak
interaction is obtained from Eqgs. (55) and (52) by the
transformation ¢ — —q. This, of course, is not a
high-energy expansion. For given energy, it is an
expansion for small A, its upper limit being given
again by Eq. (58) with ¢ > —¢, i.c., the higher the
energy, the smaller the radius of convergence. For
large values of 4 Eqgs. (59) and (60) of the p repre-
sentation apply, its lower limit being given by (61)
with ¢ — —g. By use of Eq. (3), we see that the nth-
order term is proportional to

kgnk(m-—z)n(l/Ppn—l).
By the use of p = /k, this becomes
gnkqn / APn—1

As in the present case ¢ < 0, this is nothing more than
a general term of the A representation. We thus
conclude that, for potentials of the form 1/r” in the
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case of weak interaction, the two representations
coincide.
B. F(r) = e-sr

The same method as outlined in the foregoing
sections applies here too. However, in the present
case, the algebra is much more involved than in the
case F' = 1. We give here only the general dependence
of the phase shift on ¢ = u/k. The lower limit of the
integral z,(¢) is determined by

1 — (Az3) — (2g/zpt)e™™" = 0,

where we have put g(u/uo)’ — 8.
We find for small ¢

2,(0) = Qg2 (1), (64)

where P, is an ascending power series with P,(0) = 1.
Substituting this into the expression of the phase shift

s="*_ . 4 i(-—n"(%)ﬁ"
2 n=1 n

(65)

% o/n 2g $ oo e—stm
x sgo (S ) (Ft—a) fz,, x2n+(11—2)s dx,
we obtain the following dependence of é on ¢:

S = ﬂ + t—a/-np2(t(a1»q)/p)Pa(tﬁq/ﬂ)

+ [ll’l t+ P4(t(p—a)/a)] 2 za(st )t2n—ms—1 (66)

n=1 s=1

The three functions P, are ascending power series with
P,(0)P3(0)P,(0) 5 0. It is easily verified that the term
tYPP, (' P-D/P) Po(0) arises from s =n in (65), the
rest of the series coming from 5 < n. The logarithmic
term and P, arise from the Ei function [see Eq. (21)].
We have explicitly calculated only two terms: the
leading term

Py(0)P5(0) = —3(22)/?B(1 — (1/p), 3),
which is identical with the leading term of (V' ~ 1/r?),
Eq. (55), and the first term of the In ¢ series, agftl-’,

11)—1
aft) = g (2D p), @

— m).
More explicit results have been derived in Sec. 111B
for the special case p = 2, m = 1.

For the sake of completeness, we also give here the
results for the intermediate and the weak interactions.

In the intermediate case the lower limit is determined
by

28 = %207 4 2ge™,
Thus, for small ¢,
z,=o -+ ft+ yt* + (67)

The leading term o depends on both A4 and g. The
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physical reason is that for the intermediate case the
interaction and the centrifugal barrier are of “equal”
strength. Inserting Eq. (67) in Eq. (65) withg = 0, we
get the general form of the high-energy expansion of
the phase shift:

za(mt)t, + z za(int) 2n—ms—1 [p ¢

n=1 s=

We have calculated the first term of each series:

(68)

ag™ = Ef — o+ 0,8 Inye
l/ad
+ f DXt — 2% — 2gx?) — 1 + 8, ,gx],
’ (69)
at = g(—1)"Y(p — D (70)

As expected, we see that,for p > 1, the leading term
ai™ is identical to the phase shift due to the corre-
sponding potential without cutoff function (F = 1),
Eq. (63). For p = 1, a{™ is equal to the phase shift
due to the Coulomb potentlal with range (y,u)~L.
This has been shown in Sec. IITIA, where the special
case of the Yukawa potential p = m = 1 has been
calculated explicitly.

The expressions Eqs. (66) and (68) for the strong
and intermediate interactions, respectively, are valid
for small A. For large 4 the p representation should be
employed. The lower and upper limits on A for the
two representations have not been evaluated.

For the weak interaction the lower limit is deter-
mined by

22 = 222272 4 2g17 %%,

where g < 0. For small ¢ we find

z, = A+ t79P (1), an
where P, (¢) is an ascending power series of ¢ with
P,(0) = g/A*"1. From this expression it follows that,
for k — oo, the shortest distance of the interacting
particles is equal to A/k; in other words, in the case of
the weak interaction the centrifugal barrier prevails at
infinite energy. Inserting Eq. (71) into Eq. (65), we
obtain the general dependence of the phase shift on
energy:

o= t-—aza(w)t: + Z za(w) 2n—ms—1 Int.

n=1 s=1

(72)

Again we have calculated the first term of each
series:

() g f x""*dx
ao = - - Y
lﬂ—l 0 (1 _ x2)i‘
= — _g_B(I_’__l l) > 1
i\ 2 2 P
af® = —gln (2/y,4), p=1 (73
o =gl(-1" -1, p>1 (74

S. ROSENDORFF

It is easily verified that for p > 1 the leading term
a{¥’t~® coincides with the value obtained from the p
representation, namely, gk™ 16 (p) [see Egs. (3)
and (4)]. According to the discussion at the end of
Sec. IVA, this is just the leading term of the high-
energy expansion of the phase shift with F(r) = 1.

We thus conclude that for p > 1 the behavior of the
phase shift, when k — oo, is solely determined by
the strength of the singularity of the potential at the
origin and by its dependence on k.

It is easy to be convinced that the expansion Eq. (72)
is valid for large values of 4 only. However, it is not
identical with the p representation, as happens for the
corresponding case of F = 1. This follows simply from
the fact that expansion of any expression of gt—%(e~=!/
x?) in powers of g must be different from expansion
in powers of t=% Only when e =1 are the two
identical.

Lastly, the appearance or nonappearance of In ¢
depends on the behavior of the integral [see Eq. (65)]

J“”(F(x))sdx n=1,2---,
tzp X

- 2
2n+(p—2)s s=0,1,"',n,

which, in turn, depends on the value of p and the
behavior of F(x). It is easily verified by integration by
parts that if p is an even number and if F(x) is an
even function of x, no logarithmic dependence of the
lower limit ¢z, can arise. We thus conclude that the
appearance of Int is only possible if the potential
F(r)/r? is not an even function of r. A demonstration
of the nonappearance of In ¢ has been given in Sec.
IIIB, where we have calculated the phase shift for the
even potential e~*"*/r%. Also, if F(r) is a polynomial,
no logarithmic dependence on energy can appear,
irrespective of the value of p.

APPENDIX A

Here we show in some detail several derivations of
the high-energy expansion of the WKB phase shifts
discussed in Sec. III.

1. The Yukawa potential. In the text we have
evaluated the first two terms of the a series, Eq. (29).
Higher-order terms are calculated by the same
method; however, the algebra rapidly becomes
complicated. On the other hand, a general term of the
b series is easily derived as follows: Start with Eq. (20);
with the help of (21), (22), and (24), we get

Int,

_z( 1)”( )12"2( )(12)8(2%_:52:—1:%
(A1)

We are interested in a particular power of ¢ Call
v=n—s,n>v2>0; thenwe get Eq. (32). Itis now
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easy to show that for constant v the series converges
if 2egt < 1.

2. The potential V(r) = ge™*[uyr®. We start with
Eq. (38). The leading term a,/t* in Eq. (40) is
obtained as follows: The integral is calculated ac-
cording to Eq. (21) with r=1. Next put
exp (—stzy) =1 and use the leading term of z,(¢),
e., (2gu/t)t, and put s=n. This gives for the
infinite series of (38)

(ny) 21( 1)”(%) 2n 1— 1

The following is easﬂy shown:

gl(— )"( ) = =£w[(1 - ;15)%-— 1] dx,

(A3)

(A2)

=1-Z

This, together with the leading term of z, in (38),
yields the leading term (2gu/t)? of the phase shift.
There are five contributions from the infinite series in
(38) to the energy-independent term a, .

() In Eq. (21) put r = 1 and exp (—stz;) = 1. In
(38) put s=n and take the second term in the
expansion of 1/z,(f). Thus

an 3 (-1" (ﬁ)

(ii) The same as in (i), but, instead of expanding
1/z,(t), expand exp (—stz,). This gives

—Zgyél(— r (fn) 2n "_ 1

(iii) In (21) put r =2 exp (—stz;) =1. In (38)
put s = n and take the leading term of 1/z,. Note that
n 2> 2. We get

oS
2682 (=1 (n)(2n " Dhen—2 WO

Adding these three contributions, we obtain
n 1
w3~ 3D (*)——1) —guln2. (A7)

(iv) The next contribution is derived from the
exponential integral term with (n, 5) = (1, 1). It is

—4gp In(y32gp). (A8)

(A4)

(A3)
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(v) The last contribution comes from the first two
terms in (38):

mh + gp. (A9)

Adding all contributions, we get a, as given in (41).
As to the b series in (40), its derivation is very
similar to the corresponding Yukawa case.

APPENDIX B

In this appendix, we wish to derive a simple
expression for an upper limit on the absolute value of
dwkp- Assume that the repulsive potential V(r, k)
satisfies the condition that r?V(r, k) is a monotonically
decreasing function as r increases. Now expansion of
the first integrand in Eq. (2) yields

dwrp = -7;—}' —z+ %(—1)”(i)12n

n=1

© dx 2M (x\ (x
X —l1 +=—(=\V{-,
J; x2"( + AR (k) (k‘
where z satisfies the equation

2
1—’1——2ﬂv(- k) 0.

k) )", (B1)

B2
22 kK \k (B2)
Note that every term of the infinite series is negative.

Thus, by the above condition on V, we get the in-
equality

wnl < = Z 2+ 2 = 5= (F)
2\ [z © dx
L4+ —=\V{=,k —, (B3
x( +SEVE L s @
which by (B2) becomes
bwisl < =22+ 2 - 23— 1)"(%)—1— . (B4)
n=1 2n—1
The last sum is given by (A3). Therefore
[0wgsl < 47(z — 2). (B5)

Note that this inequality holds for every angular
momentum, every energy (as far as the WKB approxi-
mation is reliable at lower energies), and is independent
of the dependence of the potential on energy. For the
special case ¥V oc 1/r?, (BS) becomes an equality.
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The solution of the collisionless, relativistic Vlasov-Maxwell set of equations is given for the case
where neither ambient electric nor magnetic fields are present and a smeared-out negative charge back-
ground preserves over-all space-charge neutrality with a relativistic proton plasma. The method of
solution is based upon the eigenfunction expansion method invented by van Kampen. It is shown that,
besides the relativistically modified modes of Case and Zelazny, there exists a new discrete set of modes
whose phase velocities are greater than the speed of light in vacuo. The solution also exhibits the coupling
of electrostatic and electromagnetic modes and the existence of complex phase velocities. This initial-
value problem (or the problem with the electron and proton roles reversed) is of interest because of the
existence of cosmic rays, relativistic electrons emitting synchrotron radiation in nonthermal radio
sources, solar noise generation, where electron velocities may approach ¢ (Bailey, 1951), and high-energy
electrons in laboratory machines (Post, 1960). In these cases the nonrelativistic treatment is clearly

inadequate.

1. INTRODUCTION

THE study of plasma oscillations from the point of
view of an initial-value problem has received
considerable attention, particularly in the absence
of any ambient electric and magnetic fields. The
behavior of longitudinal waves in a nonrelativistic
plasma, developed by Landau' and van Kampen,?
has been investigated in great detail by Case,® who
showed the equivalence of van Kampen’s normal
mode analysis and Landau’s Laplace transform
treatment. More recently, Zelazny* has discussed the
behavior of longitudinal and transverse waves in a
nonrelativistic plasma, when coupling occurs between
the two types of waves, from the point of view of an
initial-value problem. He shows that a nonrelativistic
generalization of Case’s procedure yields a complete
set of eigenfunctions of the van Kampen type and he
points out the equivalence of this method of solution
to a Landau-type approach.

In recent years it has been realized that situations
can occur, either naturally or man-made, where the
nonrelativistic treatment is inadequate. Thus, in
trying to understand the better-than 19 isotropy of
cosmic rays (Greisen®) we need to consider the oscil-
lations which can occur in a relativistic plasma.
Likewise, in the generation of solar noise, it has been
suggested (Bailey®) that electron velocities may reach
some appreciable fraction of the velocity of light.

* This research was supported by the National Aeronautics and
Space Administration under Grant NASA NsG 96-60.

1 1. Landau, J. Phys. USSR 10, 25 (1946).

2 N. G. van Kampen, Physica 21, 949 (1955).

3 K. M. Case, Ann. Phys. (N.Y.) 7, 349 (1959).

4 R. S. Zelazny, Ann. Phys. (N.Y.) 20, 261 (1962).

5 K. Greisen, Progress in Cosmic Ray Physics (North-Holland
Publishing Company, Amsterdam, 1956), Vol. 3, Chap. 1.

¢ V. A. Bailey, Phys. Rev. 83, 439 (1951).

Again, in high-energy laboratory plasma devices,
there is reason to believe that electrons can attain
velocities close to that of light (Post?). Further, if we
attribute nonthermal emission of noise in radio
sources to synchrotron radiation, we have a situation
where the speed of a particle approaches c.

Therefore, we feel that the problem of oscillations
in a relativistic plasma is of considerable physical
interest. This problem is closely tied to an initial-value
problem since oscillations must be triggered by some
initial perturbation either in the electric and magnetic
fields or in the plasma distribution function, or both.

In this paper, we propose to examine a simple
initial-value problem in order to gain some physical
insight into the behavior of relativistic plasmas. The
situation to be developed deals with the collisionless,
relativistic Vlasov equation for a proton plasma
together with the full set of Maxwell’s equations from
the point of view of an initial perturbation in the
distribution function only. There is assumed to be a
smeared-out electron charge background which takes
no part in any motion and serves to satisfy over-all
space-charge neutrality. The method of solution
makes use of the normal mode technique of van
Kampen,? extended by Case® and generalized by
Zelazny* for nonrelativistic plasmas. We show that in
order to take the relativistic nature of the problem
into account, we have to modify even further the
van Kampen? technique.

A recent paper by Wang® has considered purely

? R. F. Post, in Proceedings-of the International Summer Course in
Plasma Physics (Danish Atomic Energy Commission, Riso, Denmark,
1960), p. 367.

8 H.S. C. Wang, ““Stationary Wave Theory for Relativistic Plasma
Oscillations,” Technical Report of the National Bureau of Standards,
Boulder, Colorado, 1961.
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longitudinal modes in a relativistic plasma from the
point of view of an initial-value problem without
considering the coupling of these space-charge waves
to transverse waves. However, even in the nonrela-
tivistic plasma, it is well known (Kahn®) that the
coupling is quite strong. It can also be shown (Lerche??)
that the coupling of stable space-charge waves to
transverse waves drastically alters the stability
requirements of the pure transverse wave in a rela-
tivistic plasma. Thus, the initial-value problem should
(and will) be discussed taking the full set of Maxwell’s
equations into account.

Further, it has been brought to our attention by the
referee that Felderhof (1963) has considered in detail
the nonrelativistic initial-value problem when the
distribution function is isotropic. In this case one can
separate out the longitudinal and transverse waves
since there is no coupling. Felderhof!! demonstrates
that an isotropic relativistic plasma leads to equations
which can be handled in exactly the same manner as
the nonrelativistic situation. Again one does not
obtain coupling between the longitudinal and trans-
verse waves. In view of the remarks already made and
because of the number of situations, both natural
and man-made, in which the plasma is known, or
suspected, to have an anisotropic distribution func-
tion, we feel that the solution of the initial-value
problem for anisotropic, relativistic plasmas is not
without some interest.

We assume that the equilibrium state of the rela-
tivistic proton plasma’s distribution function corre-
sponds to the absence of any space-charge density
and current density. It is further assumed that no
ambient magnetic or electric fields are present. Thus
any fields which arise are a direct consequence of the
distribution function being perturbed at some instant
of time which, for simplicity, we take to be ¢ = 0.
Also the equilibrium system is taken to be homoge-
neous in coordinate space. However, we make no
statement concerning the variation of the equilibrium
distribution function in momentum space.

2. EQUATIONS OF MOTION

The relativistic proton plasma’s distribution func-
tion F satisfies the Vlasov equation:

A% p OF
at  (1+p) ox
€ (pr)] oF
+—lg+2="].Z=0.
mc”l: (1+p’)1r )

* F. D. Kahn, J. Fluid. Mech. 14, 321 (1962).
10 1, Lerche, J. Math. Phys. (to be published).
11 B, U. Felderhof, Physica 29, 293 (1963).
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Here ¢, m are the charge and rest mass of a proton;
the normalized momentum p is defined in terms of
the actual momentum p’ through mep = p'.

The set of Maxwell s equations can be written

9E
VxH-— —1———47T€ F, - _——d s
X c a1 f( + )(1 + 2)* p
¢))
V x E + ¢"{(@H/d%) = 0, 3)
V.E = 4ne f (F, — F.) &p, “)
V.H=0, )

where F, and F_ are the proton and electron distri-
bution functions, respectively.

We assume that the relativistic proton plasma
equilibrium distribution function fy(p), which is
known and is solely a function of p, is perturbed by a
small amount f;. Then f; satisfies the linearized

equation
= a_fl P af 1
a  (L+ ) ox
mc* a1+ ap
Also Egs. (2) and (4) become, respectively,
VxH-—c* %E_ 4mre P __ PR d’p, (1)
ot a+p
V-E=4vreJ.fld3p. ®)
We now spatially Fourier transform f;, E, and H,

and we obtain

! a_fl _i(k-p)

o (L+ Ot ht

mc2

(p x H) afo_o 9
x[ +(1+p")*] op @

ik x H— ¢ 1——4 f(l pf‘”dp, (10)

k-H=0, a1
ik-E = 4me f 1, &, (12)
ik x E + ¢ (dH/9H) = 0, (13)

as our basic set of equations. A factor ¢®*and an
implied index k have been omitted in Eq. (9) through
Eq. (13).
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3. SET OF EIGENFUNCTIONS

The general approach of van Kampen’s eigenfunc-
tion expansion method, which we preserve, is to
look for solutions of Egs. (9) through (13) in the form

fl(P’ t) ‘P(ﬂ, p)]
E() ) =exp (—ikef){ Ei(f) ;, (14)
H(n) Hl(ﬂ)J
where k = |k|.
Inserting Eq. (14) into Eqs. (9) through (13), we
obtain
-k <
ip(B, 1:)[(1 e iy ﬂ} + >
(P xH) e )
E, +—3 =0, (15
x[ +(1+p2)*] dp (9

ik x H, + ikfE, = 4ﬂeJ‘~—L% d’p, (16)

(1+p)
k-H, =0, an
ik-E, = 4ne f o &°p, 8)
k x E, = kfH,. (19)

It now proves convenient to consider a momentum
coordinate system defined by

py=k7k-p); p.=p—k'pk (20

It is also convenient to decompose the electric and
magnetic fields into components pointing along, and
normal to k. Thus, we define

E = (-Epk?; E, =E—kkE|,
H" (k Hl)k_, H_L=H—kk_lH||.
In terms of these variables we see that Eqs. (15)
through (19) become
€
’ - +
#o. i, Pi)[a + it ﬁ] ikmc®
X [El + M—I;:] .% - 0’ (21)
1+ p»* op
4mre
E = —k @B, py>PL) &°p, (22
kxH, + kfE |
. P 3
= —idme | ——— (p(ﬂ’P > P )d D, (23)
f a4 T
kxEl=kﬁHL, (24)
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We also note that

ﬂfq)pf

From Egs. (23) and (24) we have

2),} @ d°p. (26)

4mfe PL‘P(ﬂ:Pu,PL) 3
E = d
B=2F-v] a+
+ 8, (BB — 1), (27)
_ 4me k x p )8, P> PJ_)
6= ik — 1) 1+ pt

+h (B3 — 1), (28)

where &, (£1) and h, (£1) are so far completely
undetermined. However, they are not independent.
This can easily be seen by using Eq. (24), and it
follows that

h, () = (kp)(k x &, (8)).

Thus, we have the solution of Maxwell’s equations
in terms of ¢ and & . Making use of E, , E|, H,,
and H| in Eq. (21), we obtain

(29

4me® 0
e ﬁj’q)d%

_ﬂ]_k2

4]
'p[(l + )R

m62 ap”
d(f* — 4mé P pdp
+ [ ikme ,3 l(ﬂ) Pmc(B: — 1)J (1 + pz)*]
Py o P fo
J(p- ) ey B o] _,
I:('B ¢! +'p2)'l’)apl a+ pz)% 8p"] 50
For brevity, we now define
U, (@8, Dy PL)
Py fo P, 9
= _———— } —— — s
“[(ﬂ 1+ p2)*)am a+p ap.,]
(31a)
Un(Pu sPy) = ol(afo/al’u)’ (31b)
o = 4mwe?{mc2k?, (31¢)

Then Eq. (30) can be written as

;ﬂ_ — —_— U da
«P[(l g ﬂ] "(pu,pi)fqﬂ P
UJ_(ﬂ, Py>PL) J‘ p,od’p iko
-1 A+t 4mﬁ

X UJ_(ﬂ’ P>PL) 8,0 —1)=0. (32
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The formal solution to Eq. (32) can be written as

(Pl | 1)
L P PL) = !
.o b (A + pHt1 = ﬁ}f

3
U, (8, Pu,PJ_) f(lllj dz)%
s D{lpy/(1 + pOt — B}
ikaU (B, py,py)* 8J_(ﬁ)6(62 —1)
anep{lpy/(1 + P — B}

Py

MB,p )t —————B), (33
+ X821 ((1 e ﬂ) (33)
where so far A(8, p,) is completely arbitrary. We can
use the fact that Eq. (33) is the solution to Eq. (32) to
set some restrictions on (8, p,) through the per-
turbed space-charge density and current density.
Thus, if we integrate Eq. (33) with respect to d°p, we

obtain

p(ﬂ)[l -

Uipy,p) d°p ]

{Ipy/(1 + PO — 8
_[3uB) | ikad(f — 1),

[( ot e l(ﬁ)]
* U_L(ﬂs pll L p.L) dsp

{lpy/(1 + Pz)%] - B}
Py 3
= f A(B,pL)8 ( Y ﬂ) @’p, (34

where

p(B) = f o d°p, (35)

1.0 = T (36)

The asterisk on the integrals denotes the principle-
value integrals in view of the fact that an arbitrary
amount of § function has been added to Eq. (33).

Likewise, if we first multiply Eq. (33) by p,/
(1 + p»? and then integrate with respect to d®p, we
obtain

Uy(py, ) &°p
Ji(f) — .

@ (5).[ [y — B + PO

_ [ J.(B)  ikad(p® — 1)
# -1 dmef
f* p.U.(B.p,p)

[py — B(1 + 9’
- f T e ((1—+—-5; ﬁ) &p. (37)

For simplicity we now define
Uylpy, ) d°p
A48 =1 Py ;i ,
{lpy/(1 + p*)*1 — B}

sl(ﬁ)]

(38a)
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+ U, (B, Pu,Pl)dsp
B,(f) = .
RO = [ ot e — )

Provided f; satisfies Holder-Lipschitz conditions (we
assume it does), we can write

p.Upypy) d’p

(38b)

B = . (38
1®) f o+ 29— gy + ot &
We also define the tensor
*p U (B, p,p.) &°p
TB) =18%— 1) — . (40
B =1E~1 f [py — B + pHh @

Againusing thefactthat fysatisfiesthe Holder-Lipschitz
conditions, we have

2 fo
TR =182 — 1) — o« | —L0—
B =16 —1) “f(1+pz)%
| — PP &
X [ a+ p’)*] ?
—f mzplU”(p”,mz) ;i"p . @
@ + pH{[p)/A + pH*1 — B}

Note that | is a second-rank unit tensor in the 2-space

ofp, .
Now the harmonic mean energy of the plasma is
defined by

(& = (e [ I & L= e,

Also, the tensor velocity dispersion per given
energy in the plane normal to k is just

say. {(42a)

<U_§_U_LE—I> — m—-l f(’pipl dgp (42b)
1+p
= XEHW,, (420)
thus defining W | .
Hence, Eq. (41) can be written as
TB) = 1(p* — 1 — ya) + yaW |
* Ui(py, &

PP Uyp,p)dp 3)

{lpi/(1 + P94 — 8}
Thus Eqgs. (34) and (37) become

P(ﬂ)Au(ﬂ) —-R;B-B.(B

tkad(f® — b
- 3—4%—98l(ﬁ) ‘B, (p)

= ja(ﬁ p.)d ((1+ 5 5) &p, (44)
—p(BB,(B) + R (B) - T(B)

- BedF =D 5)- g - 1)~ o
3
=I5 - T AR (m ﬂ‘)dp, (45)
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where
Rl(ﬂ) =J, (A - ).

In order to consider various f values, it is convenient
to make use of three simple properties of 4 functions.
These are:

@) 181 <1 and B real,

Py _a+p)
6((1+p’)*_ﬂ)=(1—ﬁ2)‘3 *
P(L + p2)%
( T — gy )  (16e)

(i) 18] > 1 and P real,
8{lpy/(1 + ] — gy = 0. (46b)
(iii) If B is complex, it is clear that p, — B(1 + p»}
is never zero since p; and (1 + p?? are real variables.

As a consequence
AB,p) =0, (46c¢)
for complex g.
We now have the following situation for various
ranges of §.

Class 1: For real § lying in the range —1 < $ <1
for which 4 (8), B, (8), and T(B) do not vanish, the
following conditions must be satisfied by i(8, p,):

AB,p )1+ p2 ) d%p
f -t
= p(B)A4,(B) — R (B)-B,(H)
_ ikad(B? — 18, (B) - B ()
47ef ’

47

f p.(1 — BB, p.) d'p.

= —p(BB.(B) + R (B) - T(B)

_ ikaéjﬁzﬂ— De, @018t - =101 49

Class 2: For complex § we obtain a system of
homogeneous equations for p(f) and R, (5):

p(B)4,(A) — R (B)-B, (B =0, (49)
—p(BB_(B) + R (£ T() =0. (50)

Thus, a nontrivial solution exists for complex g if and

only if
ot ’ 4@ -B.(®
-B,(® T®

We suppose that Eq. (51) is satisfied for M complex
values 8, (j=1,2,+-, M).
We assume, for simplicity only, that the roots of

=0. (51)
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Eq. (51) are simple. The more general case of multiple
roots is described in the Appendix.
The eigenfunction corresponding to g, is

(pj(ﬁi’ p|| ’ pJ.)
- p(BHU(py>P 1) + U(Bs, py>PL) - R.(B))

{lpy/Q + P - 8}
G=12--,M). (52)
Since p(8,) and R (B,) are related through Egs. (49)
and (50), there is only one undetermined constant,

say p(B;), for each ¢,(8)).

Class 3: For real § and |f| > 1, we again obtain
the system of homogeneous Eqgs. (49) and (50). The
condition for eigenvalues to exist is the same as Eq.
(51) and the eigenfunctions are of the general form
Eq. (52). We assume that Eq. (51) is satisfied for some
real 8, with |5, > 1, where j=M 4+ 1, M +2,---,
N.

Class 4: It may also happen that some real g; with
|8;] < 1 satisfy Eq. (51). We suppose that this gives
rise to 8; (j =N+ 1, N+ 2, --, P). This situation
occurs if and only if

[jll(Pll ’ P_L),:p“=g,(1+,,2)'} =0,
(j=N+1,N+2,---,P). (53)

This condition arises because we must demand that
simultaneously

Af(B) —BY(B)
-BY(8) T8y
_ det Ai(B) —B1(8) —0, (54
-B1(8) T(B)

where the superscripts +, — are described in Sec. 4.
The corresponding eigenfunctions are of the form Eq.
(52).

We have now found a set of eigenfunctions con-
sisting of a continuum subset with real eigenvalues
B lying in the range —1 < B < 1; a discrete subset
with complex eigenvalues B, (j=1,---,M); a
discrete subset with real eigenvalues 8, (j = M + 1,
-++,N), and |8 > 1; and a discrete (somewhat
singular) subset with real eigenvalues 5, (j = N + 1,
---,P) and |8 < 1. If this set of eigenfunctions
is complete, and we demonstrate that it is, then any,
and every, solution of the Vlasov—Maxwell equations
can be expanded in terms of this set.

4. PROOF OF COMPLETENESS
OF THE EIGENFUNCTION SET

The aim of this paper is the solution of the initial-
value problem, and the proof of completeness is
intimately related to this problem. Thus, if the set of
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eigenfunctions is complete, it follows that the general
solution of the spatial Fourier transform of the
Vlasov-Maxwell set of equations can be written as

P
k, 1) = 21991(51’ 708 18 el
j=

+1 _
+ L 9B, 21 B )P AR (55)

When f, is given at some initial time, which for the
sake of convenience we take to be t = 0, we have

P +1
fie=0=S0) + [ #bpi. 08 (50

Note f; (t = 0) is given. Thus, if we can demonstrate
that the unknowns A(8,p,), &, (£1), and
PB)(j=1,-,P)

can be determined, it follows that a solution of the
initial-value problem is at one and the same time a
proof of completeness of the eigenfunction set. We
now demonstrate that it is indeed possible to deter-
mine the unknown parameters.

The constants &, (41) depend upon a precise
statement of the initial-value problem. If we assume
that the electric and magnetic fields are a direct
consequence of the initial dlstnbutlon function
perturbation, then we require

E t=0=0=H, ¢t=0).

We could choose to demand that some initial
perturbation in the fields determines the perturbed
distribution function f; (¢ = 0). This choice of initial
values does not alter the argument; it merely changes
the values of &, (4 1). As a consequence, for a proof
of completeness, it is sufficient to choose the initial
values in the manner described.?

Then we have

1 P
E, (1=0)= f EL(B)dp+3ELB) =0, (T)

1 P
H, (=0 =] H.()dp +SH.6)=0. (5Tb)

Upon making use of Egs. (27) and (28), we see that
Eq. (57) becomes

pi [2 BR.(B)+ f AR (B) dﬁ]
F»,L(ﬂ)é(ﬂ2 —1)df =0, (58a)

fx(P|| sPLs

Tk x [glkl(ﬁm " Rﬂﬂ)dﬂ}
+kx f &,(AF5(F — 1)df = 0. (58b)

12 An alternative procedureisto let E| t=0)=E,,H; (t=10)
= H,, but then we would have to connect H, and E, with the initial
value of the perturbed distribution function f; {¢ = 0) through the
Vlasov—Maxwell equations at time t = 0. The mathematical problem
is unchanged but the constants §L (4 1) have different values.
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From Eq. (58), it is a trivial matter to show that

B (+1) = 22 [Z(ﬁ, + DR (6,

+f_1 B+ DR.(B) dB|, (59)
&,(— 1)—2——“[2(5, DR (8)
*+1 -
+[T - vr.@ ] @

Thus, we now know &, (&£1) in terms of p{f) and
R, (8). Let us now return to the problem of solving
Eq. (56).

From Eq. (32) we see that Eq. (56) can be written

as
*t p(B) dB
Uilh: m)f {lpyf1 + P - B)
+J*+1 U, (5, Pi>Pi)* R, (B)dp
{lpyf01 +p )é] B}
+ ika J‘*“ U, (B, py,p.) & (BB —1)dp

4we -1 {[pn/u + Y - 8
8p ——=l ) 4
RN (ﬁ 2)5) B
=f1(Pll 2PLs k,t= 0) ":glq):i(ﬂh Py p_l_)
(61)

- Setting vy = p,/(1 + pz)% and

1)
O(py,pL) = fAlpy>pLs ks 0) —gl%(ﬁ;, pysP1)
_ _i_k_“ [U;(i, py.PL)" &, (1
4me (vy—1)
UJ,(_la pll > p_l_) * 8_]_('—1)
, (62
('Un +1 ] (62
we see that Eq. (61) can be written as
**1 p(B) dp
vy, Uy(py» LB
(vy,pL) + Uylpy P_L)f (0, — )
1y U, (8, Py p.) R, (B dp =®
+f—1 (Un - B (p” Pu)
(63)

We must solve Eq. (63) together with the restrictive
conditions of Class 1, since v is real and |v;| < 1.
In principle, this enables us to determine p(f),
R_i,(ﬂ)s A(ﬁs p_l.)’ and P(ﬂ:) (j = l’ T ’P) In order
to demonstrate this fact, note first of all that

UB.pip)_ 9 P Upy.pL) 64
vy — B) mapj_ (v — A + P2)§‘ 4
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Use of Eq. (64) enables Eq. (63) to be written as
*1p(B)dB

(v” B)
1R () dB
+ Uypyr 1) TR
e T )*fl o)

— 0@y p) +a e f R, (B) dp,

ap.
= lF(Pn »P1), say. (65)
To solve Eq. (65) together with Eqs. (47) and (48) it is
convenient to choose vy and p, as a basic triad of
coordinates, rather than p and p, .
The range of integration of v is —1 < v £ 1,and

dpy = [(1 + P — v dy;. (66)
Thus, for example, the number density n of particles
per unit volume is

h =f_ dPuffo(Pn ,P1) dzPJ_,

My, pL) + Ugpys P_L)f

I L - ¢
fl (1 2)’2‘ f( + p-L) /O(UII’p.L) | ( 7)

where fo(v, p, ) is just fo(p; , P ) expressed with respect
to v, and p, as basic coordinates.
Note also that

py = vl + P — o3t
In terms of v and p, we see that Eq. (65) becomes

**1p(B) dB

(Un B
*1R,(§) dp

L — o) Oy, p0) — 2

=D O i)*f @ =B

=W, pL). (68)

Multiplying Eq. (68) by (1 + p?)?, integrating with
respect to d2p, , and making use of Eq. (47), we obtain
pPAy() — R (vy) - B (v)
+f*+1 p(B) dp % J’ (1 + 02 Oy(vy, p) 4y
-1 (v — B 1- Uﬁ)%
*1R, (B dB
+ l—vz'lf 0wy, p.) d'p f T
A=)~ [P Uy P dPL ) -
- ika&('vﬁ _ 1)8l(’vn) . BJ_(’U”)
47T€’U”
+J“T’(v” P APy
—
(1=}

Likewise, if we multiply Eq. (68) by p, , integrate
with respect to d”p,, and make use of Eq. (48), we

Ay, p) + Oy, Pi)f

(69

plvpA (o) — Ri(v) - B (vy) + us(v u)f
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obtain

—p('v”)BJ_(v“) + RJ_(’I)”) 'f.T(v“)

P U||('U|| ,p.)dpy (*7 p(B) dB on—%
+ L +(1— o)
f 1 — ) L @, — B %I
o [PLPLU@RY) o *'R (B)dp
f a+ Pﬁ)% P Ll (v — B
ikad(vi — 1 2
= ’—&T—)smu) 0 = 1) = Tp]
PJ.‘F(UII > PL) d° P
+ . (70
We now let
f (1 + P Oy(oy, p) 1 = (1 — (o)),
(71a)

PL U"('v" ,p)dp, =1 — ”ﬁ)vl(vn)’ (71b)

f( ll(vH ’ p_L) d P = (1 - 'U") W(’Up)
(71¢)

We note that vl(v”), V,(v)), and W(y)) are known
functions of v, since fy(v,,p,) is specified. We also
set

qp Vi s d P
F”( ' ) J- ((|] pJ.)") L
lkaé(vn 1)8_1_(0") ° BL(LH)

47T€’U”

» (722)

quf(vn,lu)dlh
F, (v f a— 'u”)
+ lkocé(v” - 18, (v

41T€’l)||

- [I(wf — 1) — Tl
(72b)
Then Eqs. (69) and (70) become, respectively,

o) dB
@ -5

(8)dp
RBP4 — 5 = Fy(v), (73)

*+1 d
v, () j p(B) /3

(v —

+V, (- f

p(v)PBL(vy) — Ri(vy) - T(v)) —

*1R R, (B)dp ﬂ
-1 (v — p

In order to solve the singular integral Eqs. (73) and

—_ W(’U“) . F_L(’U”). (74)
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(74) it proves convenient to define the column vectors

Q) = [ Y f‘(’”?l)] (752)
Fy) = [—llf}(”z“)} (75b)
We also define the matrices
A) —B
£(v) = [B JE::; _Tl(:;’)] (762)
o[, 2] o

In terms of these quantities, Eqs. (73) and (74)
become

*+1
£0)Q(vy) + M(vy) f (Q(ﬂ) tg
U

Before proceeding with solving Eq. (77), we note that
a relation exists between L(v)) and M(v)). We can
write

= F(v). (77)

1 M(B) dB
-1 (8= Uu) ’
where the constant matrix ¥, which is known once
Jo is specified, is given by

L) =73 - (78)

1 0
§= [ ] 9
0 1(F* = 1 — ya) + yaW,
Thus Eq. (77) becomes

*+1 A(B) d
3Qv)) — (’Uu)f 7 (ﬁ) ’-’lg
*+1

We now restrict the problem shghtly by demanding
that fy(v,p) tend to zero as vy — 1 in such a
manner that AM(41) =0 and F (+1) =0, so that
Q(£1)=0. In any physical situation, this will
indeed be the case.

Under this restriction, we note that even though
the functions M(v)), F(v;), and Q(v) are defined
only for |v| < 1, we can extend their values into the
domain |vj| > 1 by setting

Q@) =F@) = M2z) =0; |z| > L (8
Upon so doing, we see that Eq. (80) becomes
** ML(B) d
sem - [ 2 f Q@)
* QBB _
+ Mo I)foo © - F(v). (82)
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We can now gainfully employ the method of solution
developed by Case® and Zelazny* to solve Eq. (82)
We define

o(z) = Qmiy™ _w %‘, (83a)
q(z) = =)™ _w %"l—%, (83b)
£(z) = (2mi)™ f— ® %, (83c)

We denote by + and —, respectively, the values of
these functions as Z tends to v lying on the real axis
in the complex x plane from above or below the real
axis. The following Plemelj formulas are valid:

°'+(U|1) — o0 (y) = Mo(v),

, — *° M(B) d
7Tl[o'+('v") + 0 (v”)] =J;w (,3(—%? ,
1 A(B) dp
= —_—, 84b
L B — ) (840)
‘l+(‘v||) —q(v) = Q(v),

mila (v) + q ()] = f (‘;(’9—)1—2‘—”;,
—® — Y

o[ o0
-1 (B— U||) ’
f+(v”) — f~(v)) = F(v),

**F(p) df
w (B~ o)’
f *FB) dp
4 (B - ’U||)
We see that with these definitions, Eq. (82) becomes
[& — 2miot(v)lgt(v)) — £ (v))
= [§ — 2mio~(v)]lq (v)) —
It follows that
[3 — 2mio(2)]q(2) — £(z) = x(2),

is a holomorphic function in the whole of the complex
Z plane. As a consequence of Liouville’s theorem,
it is a constant. By considering |Z| — o and by use
of Eq. (81), we see that (Z) = 0. Hence

q9(z) = [§ — 27io(2)]7M(z) = j(@)f(z)/det [L(2)], (86)

where j(Z) is the cotensor of § — 2wic(Z). We note
that the determinant of £(Z) is just the determinant
on the left-hand side of Eq. (51).

(84a)

(84c)

(84d)

(84¢)
77'1'[f+(v1l) + f_('”u)] =

(84f)

-(v). (85)

say,
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Since q(Z) is everywhere sectionally holomorphic,

it follows that, whenever Z=2; (j=1,---,P),

det [£(z;)] = 0, )

then we must also have j(Z)(Z,) = 0, (j= 1, , P)
at the same set Z; of points.

Thus, we can now find all the arbitrary constants
which enter into Eq. (56) and are included in f(Z),
i.e., all the p(B,) (j=1,---, P) can be determined
and hence the R | (8)).

Knowing ¢(Z), we see from Eq. (84c) that

_ Jrft(vy) _ J (X (vp)
A = et [Erop]  det [E (o] (88)

We must now determine A(8, p,) and &, (31). Use of
Eqgs. (88), (59), and (60) enables us, by integrating
with respect to 3, to obtain two equations containing
only the two unknowns &, (&1). In principle, these
equations can then be solved to yield &, (+1) as
an explicit function of f;.

Knowing &, (£1), making use of Eq. (84d), (87),
and (88), we see from Eq. (63) that it is again possible,
in principle, to determine A(v;, p, ). Thus, our task is
now complete. We have demonstrated that all the
unknown functions which enter the problem can be
determined. As a consequence, the solution of the
stated initial-value problem does yield a completeness
proof of the set of eigenfunctions of Sec. 3.

5. DISCUSSION

In the absence of any ambient magnetic or electric
fields, we have shown that an initial-value problem
for a collisionless, relativistic plasma can be solved
taking into account the full set of Maxwell’s equations.
The class of continuum waves which results differs
from the continuum class obtained for a nonrela-
tivistic plasma. In the relativistic case, this class is
limited to —1 < § < 1, while in the nonrelativistic
case, the corresponding limitation is — o0 < 8 < .
Thus, the nonrelativistic plasma has, in reality, a
spurious continuum of waves for g real and |§| > 1.
The techniques employed by van Kampen,? Case,?
and Zelazny? for solving the nonrelativistic initial-
value problem have to be modified to take account of
the finite nature of the velocity of light. The conse-
quence of this fact gives rise to two discrete subsets of
eigenfunctions which have real eigenvalues . The
eigenfunctions for these two subsets differ depending
upon whether || <1 or |f| > 1. This particular
point is not brought to light by the corresponding
nonrelativistic initial-value problem, where the dis-
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crete subset of real § values with |8]| > 1 does not
arise. It is clear that the physics of the situation
demands that these two subsets differ, since for
[f] < 1, there are always some particles which can
resonate with the wave, while for [8] > I, there are
no particles which can resonate. (See also Felderhof.!?)

The problem also demonstrates that coupling
exists between the space-charge waves and the
transverse waves. There are two simple ways to see
that such a coupling is to be expected. If a time-vary-
ing perturbation space-charge p(X, ) is generated,
then a perturbation current density j(X,f) will be
induced through

opfot +V -j=0. 89
The other method is to note that a perturbation
electrostatic potential ¢(x,7) will induce a per-
turbation electromagnetic vector potential A(x, )
because of the gauge condition
c Y opjoty + V-A=0. (90)
It should be obvious that the two approaches are
equivalent. In view of the formidable amount of
mathematics involved, no account has been given of
the manner in which the coupling perturbs the purely
longitudinal and purely transverse waves. A simple
discussion of wave coupling, neglecting initial-value
behavior, has been given elsewhere (Kahn,® non-
relativistic treatment; Lerche,!? relativistic treatment).

We also wish to point out that no statement can be
made concerning completeness from the above anal-
ysis in the presence of ambient magnetic and electric
fields, since it is well known that such fields increase
the number of possible modes.

Finally, we state that the initial-value problem
which has been discussed is one of the simplest we have
been able to think of. The complications which arise
when the system is spatially inhomogeneous, possesses
equilibrium currents and space-charge density, has a
streaming velocity, or is embedded in ambient fields,
are frankly uninviting,

With these remarks in mind, it should be obvious
that the above calculation is less than a full resolution
of the initial-value problem for a collisionless,
relativistic plasma. Its advantage is that it demon-
strates several interesting physical points without
involving an extremum of complicated mathematics.

APPENDIX

When the roots of Eq. (51) are not simple but are
say, of multiplicity m; (j=1,---,R) RSP, it
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means that the eigenfunctions are of a type different
than Eq. (52).

In particular, we must use as eigenfunctions the
type of function®®

L~ @98l *Pp,(8;, pyp )l (j=1,---,R).
(A1)

Then for every discrete eigenfunction g, we now
have to determine m; arbitrary constants S,(8;):
r=0,--,m — 1

The general solution equivalent to Eq. (55) becomes

12 G. Backus, J. Math Phys. 1, 178 (1960).
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in this case
P my~1 ar .

fl(P“ P,k 0) =521 % aﬁ“" [e™* " (B;, Dy P_L)]
=1 p= i

+1
+ [ vt mowap. A2
Instead of Eq. (87), we would obtain
@ 19BDLIB MBI = 0,
G=L4L--P; r=0,---,m;—1). (A3)
Thus we can determine all the unknowns in the
discrete B-spectrum part of Eq. (A2). As a consequence,

it is sufficient to treat the roots of Eq. (51) as simple
in order to demonstrate the completeness theorem.
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An axiomatic model for quantum mechanics is formulated using physically significant axioms. The
model contains a slight strengthening of Mackey’s first six axioms, together with two axioms which ensure
the existence of coordinate and momentum observables. The symmetries or rigid motions are an essential
part of the structure, and a link is constructed between these and the quantum proposition system. Co-
ordinate and momentum observables are defined in terms of abstract coordinate systems and one-
parameter groups of motions. It is then shown that as far as the statistical properties of these observables
in certain canonical states are concerned, the abstract model may be represented by the usual Hilbert space
formulation. Spectral properties of o-homomorphisms are also investigated. Also included are two
appendices of a technical nature: the first considers one-parameter groups of derivables, and the second

absolutely continuous s-homomorphisms.

1. INTRODUCTION

T the foundations of quantum mechanics there
seem to be three basic concepts: states, prop-
ositions, and observables. Using these concepts,
essentially two approaches to axiomatic quantum
mechanics have evolved. The first approach, due to
Jordan, Wigner, and von Neumann,! takes the
observables, while the second approach (of Birkhoff
and von Neumann?) takes the propositions as its basic
axiomatic elemerts. These two approaches have
matured into distinct axiomatic schools of thought.
The first approach was developed further by Segal®
and forms the basis of the quantum field theories of
Haag and Wightman.* The second approach has
been studied to some extent by Bodiou® and Mackey®
and more recently by Piron, Jauch, Emch, Guenin,’
and others. This paper is concerned with the second
approach and is based on the quantum-mechanical
framework in Mackey’s book.® We refer the reader to
this reference for details that are not included here.
Mackey’s first six axioms postulate that the prop-
osition system L is an orthocomplemented, partially-
ordered set with a full strongly-convex set of states,
while his seventh axiom states that L is isomorphic to

1P, Jordan, E. Wigner, and J. von Neumann, Ann. Math. 35,
29 (1934).

2 G. Birkhoff and J. von Neumann, Ann. Math. 37, 823 (1936).

3 A bibliography of Segal’s work is given in Mathematical
Problems of Relativistic Physics (American Mathematical Society,
Providence, Rhode Island, 1963).

4 Cf. R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962).
A. Wightman, Les problemes mathematiques de la theorie quantique
des champs (Centre National Recherche Scientifique, Paris, 1959).

5 G. Bodiou, Theory dialectique des probabilities (Gauthier-
Villars, Paris, 1964).

8 G. Mackey, The Mathematical Foundations of Quantum Me-
chanics (W. A, Benjamin, Inc., New York, 1963).

? Compare with C. Piron, Helv. Phys. Acta 37, 439 (1964); G.
Emch and C. Piron, J. Math. Phys. 4, 469 (1963); M. Guenin, ibid.
7,271 (1966); J. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963).

the lattice of all closed subspaces of a Hilbert space.
Although the first six axioms are intuitive and
reasonable from a physical point of view, it is
admitted that the seventh is ad hoc. Attempts have
been made to add further physically justifiable
axioms to these first six so that axiom seven may be
deduced from previous ones and thus need not be
postulated.® However, the physical justifications for
many of these additional axioms are extremely
doubtful and there seems to be no experimental
evidence supporting their existence. For example,
almost all additional axioms included the postulate
that L is a complete atomic lattice. There seems to be
little experimental evidence that L is complete and
atomic, while the fact that L is a lattice seems to
contradict the Heisenberg uncertainty principle if the
propositions of L are interpreted in the natural way.
Of course, Mackey’s axiom seven also has these
defects.

To clarify this last assertion concerning the lattice
structure of L, we must examine more closely what is
meant by a proposition system. A proposition is
usually interpreted as a meaningful statement made
about a physical system which can be both verified and
refuted by a definite experiment. We now form a
proposition system L by adding to these physically
significant propositions two ‘‘ideal” propositions,
the absurd proposition 0 which is never true, and the
self-evident proposition 1 which is always true. The
absurd proposition corresponds physically to a
statement which is refuted by every relevant experi-
ment, while the self-evident proposition is verified by
every relevant experiment. Now if @ and b are prop-
ositions, the natural interpretation of a A b is that

8 Compare with Ref. 5, the first reference of Ref. 7, and
N. Zierler, Pac. J. Math. 12, 1151 (1961).
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a A b is the proposition which is true whenever both
a and b are true. The author contends that one should
not assume a priori that a A b exists as a member of L.
Consider, for example, a spinless free particle p in
one dimension. Let a be the proposition: p is between
xp and x, + Axcm from the origin. Let b be the
proposition: p has momentum between p, and
Po + Ap gm cm/sec where AxAp < h. Now if a A b
exists, it must be the absurd proposition since, by the
Heisenberg uncertainty principle, there is no experi-
ment capable of verifying a A b. But any relevant
experiment measuring the position and momentum of
p will give position and momentum values between
certain limits, depending on the accuracy of the
apparatus, and such an experiment will not always
refute a A b. Hence we cannot even say thata A bis the
absurd proposition. Thus the author contends that
a A b is not a meaningful proposition and should not
a priori be assumed to be a member of L. It can, of
course, happen that @ A b does exist as a member of L
for some noncompatible propositions @ and b, but this
should be a deduction of the theory and not a postulate.

Although much literature has been devoted to this
second axiomatic approach, until now it does not
seem to have been developed to the point where co-
ordinate and momentum observables have been
defined. In this paper we shall start with Mackey’s
first six axioms and add three more which seem to have
physical justification. The first (Axiom 1) is physically
obvious, while the second and third (Postulates IT and
IIT) are needed only to ensure the existence of co-
ordinate and momentum observables. We are not able
to deduce Axiom 7 from these mild axioms; however,
we are able to do something almost as good. If 4 is
an observable, the only experimentally accessible
properties of A4 are its statistical properties. For
example, in the Hilbert space formulation of quantum
mechanics, the experimentally meaningful properties
of A are given by its average values (y, Ay) for
different states . Now if L, is a proposition system
satisfying our physically significant axioms, we show
that there is a map m — i from a subset M, of the
states of L, (we call M, the canonical states) into the
vectors of a Hilbert space H which preserves strongly
convex combinations, and for any position or
momentum observable 4 there is a self-adjoint operator
A on H such that the average value of 4 in the state m
is given in the usual way by (s, Am). For concrete
examples of physical significance M, turns out to be a
very large set; in fact, we show in one example that
M, spans H. We thus show that, as far as the statistical
properties of a quantum-mechanical system in a
canonical state are concerned, our abstract axiomatic
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model may be represented by the usual Hilbert space
formulation.

In Sec. 2 the axiomatic model is formulated and
physical reasons are given for the axioms. -Section 3
introduces the concepts of coordinate systems and
motions. These concepts are necessary in defining the
coordinate and momentum observables. The reader
should notice that, aithough it is easy to define the
coordinate observables, it is not at all obvious how the
momentum observables should be defined. For this
reason some space is devoted to showing that the
one-parameter motions are invariants of the motions
of the system, and it is, therefore, from these that the
momentum observable should be defined. In Sec. 4
the coordinate and momentum observables are defined
and the main theorems of this paper are proved.
Section 5 derives some properties of ¢-homomor-
phisms which may be useful. In Appendices A and B
technical mathematical proofs are given which are
needed in Sec. 4. The mathematical techniques in
these Appendices are fairly standard but are included
for completeness.

The author would like to point out that the present
paper deals specifically with Euclidean-like spaces
only. We are not concerned here with more compli-
cated spaces; in particular, relativistic theory will not
be considered. However, the axiomatic system that is
given is quite general, and it is possible that the theory
can be extended to these cases.

2. AXIOMATIC MODEL

Let L = {a, b, c, -} be an orthocomplemented,
partially ordered set with a full strongly-convex set of
states M = {m, my, m,, - - *}. The elements of L are
referred to as propositions. The states may be thought
of as giving the condition of the quantum-mechanical
system, and m(a) may be thought of as the probability
that the proposition a is true in the state m. If ¢ < ¥/,
then we say that @ and b are disjoint and write @ | b.
If @ | b, we denote aV b by a + b. We say that a,
b split and write a < b if there are mutually disjoint
propositions &, , b, c such that a = a; + cand b =
b, + ¢. We may think of propositions which split as
physically being propositions which are simultane-
ously verifiable. It is obvious that a v b exists if g <> b.
Now if @, b, ¢ mutually split, physically one would
expect a<> bV c. One can give examples® in which
this result does not hold. If L satisfies

Axiom: For every a, b, c € L which mutually split,
ac>bve

® A. Ramsey, J. Math. Mech. 15, 277 (1966).
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then (L, M) is called a proposition system. Let Q
be a Hausdorff space. We denote the o-algebra
of subsets of () generated by the open sets by
B(Q). Let (L, M) be a proposition system. A o-
homomorphism x:B(Q) — L is a map which satisfies
@ x(Q) =1; @) x(A) | x(D) if ANT =¢; (iii)
'x(UAi):Zx(Ai)’ i= 132"”a if AinAJ=¢’
i # j. If Q is the real line R, then x is called an ob-
servable. If ) is the complex plane C, then x is called a
derivable. Two o¢-homomorphisms x,:B(Q,)— L,
Xxp:B(,) — L are simultaneous (written x, <> Xx,) if
every element in the range of x; splits with every
element in the range of x,. The spectrum o(x) of a
g-homomorphism x:B(Q) — L is the smallest closed
subset A € B(Q) such that x(A) = 1. A derivable x is
unitary if o(x) < {4:|A] = 1}. The spectrum of an
observable represents the allowable values that an
observable may attain. If :Q2, — Q, is a Borel function
and x:B(,) - L a o¢-homomorphism, then f(x):
B(Q,)— L is the o¢-homomorphism f(x)(A) =
x(f1(A)) for every Ae€B(Qp). It is clear that
x> f(x). If x:B(Q)—L is a o¢-homomorphism,
u:Q — C, a Borel function, and m € M, the expecta-
tion or average value m[u(x)] of the derivable u(x) in
the state m is

mlu(x)] = fcu(w)m [x(dw)].

It follows from results in Ref. 10 that a sequence of
derivables (x,) are simultaneous if and only if there are
complex Borel functions («;) and a derivable x such
that x; = u;(x),i = 1,2, -+ . Now let ¢ be a complex
n-dimensional Borel function and x,,i=1,2,---,n,
simultaneous derivables. If x; = u,;(x), we define the

derivable ¢(x;, -+, x,) as

<ﬁ('xl’ Y xn)(E) = x{}“:¢(u1(2')’ Tt un(l)) € E}
for every Ee€B(C). In particular, x,x,(F)=
x{A:u;(Au,(A) € E}. It can be shown!' that

é(xy, - - -, x,) is well defined, that is, independent of
xandy;,,i=1,2,-++,n.

Let S be the physical space corresponding to a
laboratory experiment. For example, in the case of a
system with a finite number of degrees of freedom, S
would be the “configuration space” of our system.
Mathematically we only assume that S is a locally
compact Hausdorff space with second countability.
Let G be the group of rigid motions on S. For example,
in the finite degrees of freedom case G would be the
group generated by the translations, rotations, and
reflections in a finite-dimensional Euclidean space.

10V, Varadarajan, Comm. Pure Appl. Math. 15, 217 (1962).
1S, Gudder, Trans. AMS 119, 428 (1965).
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Mathematically we assume that G is a locally compact
group with second countability and that G is a con-
tinuous effective transitive transformation group on
S. That is, there exists a map from G X § onto §
denoted by (g, s) —gs, g€ G, s€ S, such that (i) if
81, 5p € S, there is a g € G such that s, = gs, (transitiv-
ity); (ii) for every g € G, s — gs is a homeomorphism
of S with itself; (iii) g.(ga(s)) = g1g.(s) for every
g1, 8:€G, s€S; (iv) g(s) = s for every s € S if and
only if g = e, where eis theidentity of G (effectiveness).
Note that our finite degrees of freedom example
satisfies these conditions.

We are now ready to postulate our axiomatic model.

I. The propositions and states of a quantum-
mechanical system form a proposition system (L, M).

Il. There is a o-homomorphism X:B(S)— L
(called the position o-homomorphism) such that
g—>m[X(gA)] is continuous for every me M,
A € B(S).

ITII. For every g€ G there is a unitary derivable
x,:B(C) — L such that

(i) g — m(x,) is continuous for every m € M;

(ii) if g1g2 = gag1, then x, <> x, and x, ;. = X, X,,;
(i) X(A) = X(gA)if and only if X(A) < x,(E) for
every E € B(C).

Notice that m(x,) is the expectation of x, defined
earlier and x,x, is the product of simultaneous
derivables which was also defined earlier. The physical
justification of I is discussed in the literature. Axiom II
is necessary to ensure the existence of coordinate
observables. X(A) may be thought of as the prop-
osition that the position of the system is in a set
A < S. Axiom II gives a way of representing the
position of the system in the proposition system.:
Axiom III is necessary to ensure the existence of
momentum observables and gives a way of exhibiting
the group action in the proposition system. Axiom III,
condition (ii), states that if g, and g, commute, then
their actions on S can be observed at the same time.
That is, the action described by g, does not affect the
action described by g,, and vice versa. The rest of
Axiom III, condition (ii), states that the action
described by the product of g, and g, is the product of
the actions. Axiom III, condition (iii), just gives two
ways of saying that the proposition X (A) is unaffected
by the action of g on S. The reader may wonder why
X, is a unitary derivable and not, as would seem more
natural, an observable. The fact is that our theory can
be carried through with the assumption that x, is an
observable. However, we assume x, is a unitary
derivable because we want our theory to include the
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usual quantum-mechanical formulation, in which it is
usually assumed that G has a continuous unitary
representation on the state space.

The reader should note that Axioms I, II, III,
condition (i), and Axiom III, condition (ii), apply to
classical systems as well as quantum systems. Thus as
far as these axioms are concerned, Lmight be a Boolean
o-algebra (i.e., all propositions split). However,
Axiom III, condition (iii), ushers us into a purely
quantum-mechanical realm. Specifically, we use the
fact that X(A) < x,(E)for all E € B(C) to describe the
situation that the propositions X(A) and X(gA) are
identical. Thus for the case in which X(A) = X(gA),
which is, of course, quite common, we must have
x(A) > x,(E) for some E € B(C), and the latter is a
purely quantum-mechanical phenomenon. To em-
phasize this fact we give the following theorem, which
shows that L cannot be a Boolean g-algebra unless the
space S is trivial. To avoid pathologies we always
assume O 3£ 1 in L (i.e., L has more than one element).

Theorem 2.1: Suppose we have a system satisfying
Axioms I, II, and III. If L is a Boolean o-algebra, then
S contains only one point.

Proof: Suppose L is a Boolean o-algebra and s, and
s, are distinct points of S. Since S is Hausdorff, there
are disjoint neighborhoods A;, A, such that s, € A,
and s, € A,. By transitivity there is a g € G such that
s, = gs;. Since s — gs is a homeomorphism, there is a
neighborhood A4 of s, such that gAg < A,. Letting
A = A; N A, wesee that A = A, is a neighborhood
of s,, gA is a neighborhood of 5,, and gA = A,. Now
applying Axiom III, condition (iii), X(A) = X(gA).
But since A and gA are disjoint sets, we must have
X(A) | X(gA) and hence X(A) = 0. Since S satisfies
second countability, it easily follows that X(S) = 0,
which is impossible.

We shall see later (Theorem 4.1) that as a con-
sequence of Axiom III, condition (iii), the conjugate
coordinate and momentum observables are not
simultaneous.

It is easily seen that our definition of a proposition
system is more general than that given in previous
investigations. For example, one can show that the
axioms of Emch and Piron (first two references in
Ref. 7) imply our axioms concerning L and that our
definition of splitting is equivalent to their definition
of compatibility in their more restrictive axiomatic
system. Also our definition of a state is more general,
since Emch and Piron require, in addition to our state
axioms, the condition that m(a) = m(b) = 1 implies
m(@Ab) =1.
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3. COORDINATE SYSTEMS AND MOTIONS

In this section we develop material preliminary to
defining coordinate and momentum observables. A
coordinate system for physical space S is a collection
of real-valued continuous functions {f,:a € A} on §
such that f,(s;) = f,(s;) for all @ € 4 implies s; = s,.
For simplicity, the coordinate systems that we are
using here are generalizations of rectangular co-
ordinate systems. If S is a sphere, for example, and we
were using angular coordinates, then the coordinate
functions would be maps into the unit circle. The
arguments which follow may easily be altered to
include such situations. For more elaborate spaces and
coordinate systems one would probably assume that
S is an analytic manifold and G a Lie group. For
mathematical simplicity we do not consider such spaces
in this paper. If {f,:o € 4} is a coordinate system, a
subset G, f € 4, of the group of rigid motions G is
a motion in the B direction if f,(gs) = f,(s) for all
seS, geGy, and a€ 4 such that « # f; and
[o(81835) = fo(g15) + fy(gas) — f(s), for all seS,
81,8:€G;. Gy< G is a group motion in the
direction if Gy is a closed Abelian group which is a
motion in the f direction.

Theorem 3.1: If {f,:a € A} is a coordinate system
and G, a motion in the f direction, then G, is con-
tained in a group motion in the § direction.

Proof: We first show G, is commutative. If g,
8.€ Gy, then for a # f, f.(g:18:5) = f.(g:1(g:9) =

[u(828) = fu(s) = fu(82815). Also [fy(g125) = f5(82£15)
and hence g,g,5 = g.g;5 for all s€S. Therefore, by

effectiveness, g,g, = g.8:. Now Gy U {e} is a motion
in the B direction. We next show that G, U G3*' U {e}
is a motion in the § direction. If g € G;, then f,(s) =
f(gg™%s) = f(g7%s) for « # f. If g, is also in Gy, then

So(gs) = fp(gglgl_ls),
= fi(gg's) + fa(ggr's) — fo(gr's).

fa(gar's) = f5(g9) + falgr's) — f4(s).

Hence

Also

fi(g7ls) = (g7 ggrs) = f(gi87'g1"s),

= fﬁ(glgl_ls) + fp(g—lgl_ls) - fﬂ(gl_ls)-
Therefore

To(g7g1s) = fo(g7"s) + filgi's) — f5(5),

Gy U G5 U {e}

and

is a motion in the S direction. Now let G; be the set of
all finite products of elements of Gz U Gg* U {e}.
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Then G is an Abelian subgroup of G. Using induction,

the next calculation shows that G is a motion in the

B direction. If g;, g2 € G, then f,(g18.5) = f,(g25) =

fu(8), « # B.If g3, g4 are alsoin G;, , then, carrying out

the obvious steps, we have

J3((8182)(8ag0)s) = f5(g1825) + [f5(8a8s5) — f5(5)-

We now show that the closure of any motion is a
motion. Let g, be a sequence of elements in a motion in
the § direction and suppose g, —g. Then f,(gs) =
lim f,(g;s) = f,(s), « # B. Now if g? is a sequence in
this same motion and g? — g,, we have

fi(88s) = lim f5(g,8%9),
= 1im fy(g:s) + lim fy(gls) — f4(s),
= fo(gs) + fp(805) — f5(s).
Therefore the closure of Gj is a closed Abelian sub-
group of G which is a motion in the f direction
containing G, .

We see that a group motion Gy is a subgroup of G
which corresponds physically to a movement of the
system in the f direction and must therefore be
connected in some sense to the momentum in the §
direction. Since there may be many group motions in
the B direction, and since the momentum should be
uniquely defined, we look for some kind of invariant
of the group motion, that is, a property which is
independent of which particular group motion we
consider. It will turn out that such an invariant is a
one-parameter subgroup of the group motion. P, is
a one-parameter motion in the B direction if Py is a
motion in the g direction and if there is a continuous
map A->g, from (—o0, ) onto P, such that
Bira = &a8u and f3,(518) — f(s1) = fy(508) — f(s) for
all 5;, s, € S, g € P;. The next theorem characterizes
one-parameter motions.

Theorem 3.2: A continuous map A—g, from
(— o0, 0) into G is a one-parameter motion in the S
direction if and only if there is a real number ¢ such

that f(g,5) = cA + f3(s) and f,(g,5) = f,(s), « # B,

for all s € S.

Proof: To prove necessity, fix s € .S and define the
function A:(— o0, ) — R by k(1) = f4(g,s). Then

hQ + w) = f3(g:+u5) = [5(8:8,5),

= f3(8:5) + f5(g.5) — fo(s) = h(A) + h(u) — fy(s).
Since 4 is continuous, it follows from a well-known
theorem in real variables that # must have the form

h(A) = cA + f5(s) for some ¢ € R. Of course f,(g,s) =
fu(8), « # B, since A— g, is a one-parameter motion.
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To prove sufficiency, .we have f,(g,.,5) = f(s) =
f(8.5) = fu(8,8,5) for a # B. Also

[5(8:855) = f3(8:1(8,5)) = cA + fi(g,9),
= c(h+ @) + f3() = f(81,S)-

Therefore g,,,s = g;8,s for all seS and, by
effectiveness, g,,, = £,g, - To show we have a motion,

.f;?(g;.gus) =fﬁ(g;.+us) = c(A + ) + f4(s),
= f3(8:5) + f3(8,8) — f3(5)-

We will need the next corollary for our later work.

Corollary 3.3: Let {f,:a€d} be a coordinate
system, P; a one-parameter motion in the § direction,
and X a position o-homomorphism. Then there is a
real number ¢ such that X[g, f;(E)] = fo(X)(E + c4)
for every g; € P;, E € B(R).

Proof: Let ¢ be the real number found in Theorem
3.2. First note that f;(s) = f3(g,87'5) = fp(g7's) + cA.
Therefore f;(g7's) = fy(s) — cA. We now show that
&:1f5 (E) =f3(E + cA) for every g, € Py, E € B(R).
If s e g, fg'(E), then fy(s) = f5(g,51) where s, € f(E).
Hence f(s) = f(s) + cA€ E + cAand s € f(E + cA).
If s ef;(E + cA), then fy(s) € E + cA and f3(g7%s) =
f3(s) — cAe E. Hence g;'s€f;(E) and se g, ;' (E).
We therefore have

X(g.f5'(E)] = X[f5"(E + ©)] = f(X)(E + cA).

If Gy ={g,;a €4} is the motion g, =e for all
o € A, then G, is called the trivial motion. It is easily
seen that a one-parameter motion is the trivial motion
if and only if ¢ = 0. Two one-parameter motions
P, = {gi}, P, = {g}} are equivalent (written P, ~ P,)
if there is a nonzero real number x such that g5 = g1,
for all A€ (—o0, ). We easily see that ~ is an
equivalence relation. Therefore the set of one-
parameter motions is partitioned into equivalence
classes, with each one-parameter motion contained in
one and only one class. Physically two equivalent one-
parameter motions are essentially the same, since one
results from the other by a linear change of scale. We
now characterize equivalences.

Corollary 3.4: Two nontrivial one-parameter motions
are equivalent if and only if they are in the same
direction.

Proof: Necessity is obvious. To prove sufficiency,
let {f,:« € A} be a coordinate system and let P; = {g}},
P, = {g%} be nontrivial one-parameter motions in the
B direction. By Theorem 3.2, there are constants
c; #0 such that fu(gis) =cd+fp(s), i=1,2.
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Letting 4 = c,fc;, we have
fﬂ(g},,ls) = +fti(s) = fﬂ(gis)-
Also

f8u®) = fuls) = fu(gis) for a .
Hence gl;s = g3s for all s€ S and, by effectiveness,
g, =giforall ie (—o0, w)and P, ~P,.

We thus see that the nontrivial one-parameter
motions are invariants which depend only upon the
direction. If a group motion admits a nontrivial one-
parameter subgroup, then we call it a conjugate group
motion. If a coordinate function f; admits a conjugate
group motion in the g direction, it is called a conjugate
coordinate function. Not every group motion is con-
jugate. Obviously the trivial motion is not conjugate.
For a less-trivial example, the group of order three
consisting of rotations in the plane of 120° is not
conjugate. One can even construct examples of co-
ordinate systems which admit no conjugate group
motions at all, and hence none of the coordinate func-
tions are conjugate. However, in physical situations of
interest (e.g., n-dimensional Euclidean space) it is
clear that the usual coordinate functions are conjugate
coordinate functions.

4. COORDINATE AND MOMENTUM
OBSERVABLES

If {f,;x€ 4} is a coordinate system and X the
position o-homomorphism, the coordinate observables
are the observables f(X), x€ 4. Of course, all
coordinate observables are simultaneous. Now suppose
J3 is a conjugate coordinate function and P, the
essentially unique nontrivial one-parameter motion
corresponding to f; . Applying Postulate III, there are
unitary derivables x; = x,,, A€ (—o0, ), which
satisfy  xpp, = X, = X0, = X5,%,, = XX, and
4 — m(x,) is continuous. Thus {x,;: A € (— o0, )} isa
continuous one-parameter group of unitary derivables,
and hence {x,} has an infinitesimal generator. (A
proof of this fact is given in Appendix A, Theorem
1.2.) That is, there exists an observable p; such that
x, = e*?g, L€ (— o0, ©). pg is called the momentum
observable in the f direction. f(X) and p; are called
conjugate coordinate and momentum observables.
Now it can be shown that p, is unique up to a multi-
plicative constant. That is, if p; and p} correspond to
two equivalent one-parameter motions, then there is
a positive constant ¢ such that p; = cp} . Thus to every
conjugate coordinate observable there corresponds
essentially one momentum observable. One should
note that the coordinate and momentum observables
defined here reduce to the usual ones in the Hilbert
space formulation of quantum mechanics. The next
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theorem proves the important fact that conjugate
coordinate and momentum observables are not
simultaneous.

Theorem 4.1: If f,(X) and p,, « € A, are conjugate
coordinate and momentum observables, then

[i(X) > p,, B # a,but f(X) P p,.

Proof: Let g, be a nontrivial one-parameter motion
in the « direction, and let x, be the corresponding
unitary derivables, 4 € (— o0, o). Suppose § # « and
E € B(R). If s ef;(E), then

f(gi's) =fis)€E and g7's e f;E).

Hence s € g, f;'(E) and thusf;(E) < g, fy(E) for all
A € (— o0, ). The inclusion in the other direction is
trivial and so f;*(E) = g, f;*(E)forall A € (— 0, o).
By Axiom III, condition (iii), we have f;(X) <> x, for
all Ae€(—c0, ®); and applying Corollary L.6,
J3(X) > p,. Let ¢ be the constant corresponding to g,
in Theorem 3.2 and suppose that f,(X)«> x, for all
A€ (—c0, ). By Axiom III, condition (iii), and
Corollary 3.3, f{IXNE) =Xlg.f, " (E)]=f,(XXE +cd)
forall A € (— 0, ), E € B(R). Now f,(X}(— o0, 0]=1
since if £,(X)(— 0, 0] < 1, then f,(X)(R) > 1, which
is impossible. Similarly, f{(X)}{(—co, —n]j=1 for
n=1, 2,--+. Therefore 1 = A, f,(X)(—o0,n] =
LN, (— o0, —n]) = f,(X)($) = 0, a contradiction.
Therefore f,(X) «+» x, for some 4 € (— o0, o) and, by
Corollary 1.6, f,(X) < p,.

Because of the transitive nature of G on S, it is
easily seen that there is a one-one correspondence
between points of S and elements of the quotient space
G/H, where H is a closed subgroup of G whose
elements leave a point of S invariant. If we define

“Borel sets B(G/H) on G/H in the usual manner (cf.

Appendix B), this correspondence preserves Borel sets
both ways.22 Identifying .S and G/H, we may think of the
position g-homomorphism as a map X:B(G/H)— L.
A o-finite measure v on B(G/H) is quasi-invariant if
v(A) = 0 implies »(gA) =0 for every ge G, Ae
B(G/H). Applying Theorem IL.3 in Appendix B and
identifying S and G/H, there exists a map m — # of
M into Ly(S, ») such that m[X(A)] = f, m?dv. It is
shown in Ref. 12 that quasi-invariant measures always
exist, and that if », is any other quasi-invariant
measure, then » and », have the same null sets and
these are precisely the sets whose inverse image under
the canonical map have Haar measure zero. It then
easily follows that L,(S, »,) and Ly(S, ») are unitarily
equivalent. Thus the Hilbert space is independent of

12 G, Mackey, Acta Math. 99, 265 (1958).
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the quasi-invariant measure and is unique up to a
unitary equivalence.

Now r# is a kind of position probability density, and
hence | rii(s)hi(gs)v(ds) may be thought of as giving
the probability that the system has moved from
s € S to gs. Intuitively, one might expect m(x,) to be
this same probability. We say that a state m is
canonical with respect to the measure » if

) = [ yiGgsyds)

for every g€ G. This definition is not independent
of the quasi-invariant measure, so once one has
chosen a measure, he must stick to it.

In the examples of quantum-mechanical systems
known to the author, there are always an abundance
of canonical states. For example, let S be n-dimensional
Euclidean space R®, L the lattice of orthogonal
projections on Ly(S, %), where » is n-dimensional
Lebesgue measure, and G the group of translations,
rotations, and reflections on R". For A e B(S),
define X(A) to be multiplication by the characteristic
function y,, and let M be the states on L defined in
the usual way. Then S, G, L, M satisfy Axioms I and
IL. For g€ G, let U, be the operator on Ly(S, )
defined by U,y(s) = y(gs). Then U, is a unitary
operator; now suppose the resolution of the identity
for U, is x,. With the map g — x, our system satisfies
Axioms I, II, III. Now let m be a state corresponding
to a unit vector y,,; i.e., m(P) = (y,,, Py,,) for any
P e L. Then by the proof of Theorem IL.3, ¢,(s) =
|@m(s). Thus in order for m to be canonical we must
have

f () PlEI(ds) = f 9 m(5)] |9nlgs)] (ds)

for all g € G. Hence if 9,,(s) > 0, s€ S, then y,, is
canonical. We thus see that there is an abundance of
canonical states. In fact, L,(S, ) is the linear hull of
vectors corresponding to canonical states.

The next theorem shows that the statistical prop-
erties of a quantum-mechanical system in a canonical
state satisfying Axioms I, II, III are described by
operators in a Hilbert space.

Theorem 4.2: Let (L, M) be a proposition system,
and let f(X), p, be conjugate coordinate and
momentum observables. Then there exists a Hilbert
space H, a map m — m from M into H which pre-
serves convex sets in the sense that [(XAm)m)? =
ZA,(rh;)?, and self-adjoint operators S,, T, such that
m[f(X)] = (1, Syi); and if m is canonical, m(p,) =
(m, T,#) when these expressions exist.
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Proof: Let H = Ly(S,v) and let m—m be the
map which exists according to Theorem IL3. If
m = ZAm,, then

fA (AY* dv = mIX(W)] = EAm[X(A)],

= Zl,-f (i) dv.
A

Applying the monotone convergence theorem, this
last expression equals

[ zueip s,
A

and hence (M) = XA,(7,):. By Theorem IL3,
condition (iii), there are self-adjoint operators S, such
that m[f,(X)] = (r1, S,;) when these expressions
exist. Defining the unitary operators U, by U,¢(s) =
$(gs) for ge G, ¢ H, we see that g— U, is a
continuous unitary representation of G. Now let g, be
the motion associated with p, and let x, be the corre-
sponding unitary derivables. If m is canonical, we have
m(x;) = [ mU, mdv. Letting T, be the self-adjoint
operator which is the infinitesimal generator of the
continuous one-parameter group U, , we have

m(ere) = f e Teri d.

Applying Corollary L5, we have

da
= (rh, T,y
when m(p,) exists.

Now the unitary operator U, is the “natural”
operator for representing x, on the Hilbert space. We
thus see that the canonical states are all of the states
for which this representation is possible, in the sense
that m is canonical if and only if m(x,) = | AUt dv
forall geG.

m(p,) = 4 m(e*%9)|, = f m d—dl T, i1 dv,

5. SOME PROPERTIES OF
-HOMOMORPHISMS

In this section we consider some properties of
o-homomorphisms which might be useful for physical
applications. The first theorem gives a way of calcu-
lating the spectrum of a function of a o-homo-
morphism. If the position o-homomorphism is
known and the coordinate function f is given, this
theorem gives us the spectrum of the coordinate
observable f(X).

Theorem 5.1: Let X:B({;)— L be a o-homo-
morphism, f, g Borel functions from Q; into Q,, and
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let A € B(Q,) satisfy X(A) = 1. (i) If f(4) = g(4) for
A€ A, then f(X)=g(X). (@) o[f(X)]< CI(A).
(ii) If f is continuous, o[f(X)] = Clf[¢(X)]. In (iv)
general, s[f(X)] = M {CI(A):X(A) = 1}.

Proof: (@) f(X)(T) = X[f*(I)] = X[A N fX(D)]
=X[A Nng (D)} =gX)XT). (b) We first show
o[f(X)] < CIf(Q;). Suppose Ae€o[f(X)]. Then if
AeU and U is open, we have 03 f(X)(U)=
X[f(U)). Therefore, f~1(U) # ¢ and U N f(Q,) # ¢.
Thus A€ Clf(Q;) and o(f(X)) = CIf(€2). Now let
A€ f(A) and define g(1) = f(4),if Aec A,and g(2) = 4,
otherwise. By (a) we have o[f(X)]= o[g(X)] <=
Clg(Q,) = CIf(A). (c) Since fAX){o[f(X)]'} = 0, then
X{f[e(f(X))]} = 0. Since f is continuous, the set
fo[f(X)I'} is open and hence in a(X)’. Therefore
FHLfO]} N o(X) = ¢ and o[ fXO] N flo()] =
$. Hence f[o(X)] < o[ f(X)] and Cf[o(X)] < o[f(X)],
since the latter is closed. The inclusion in the other
direction follows from (b). (d) Suppose

e N {CIf(A): X(A) = 1},

Suppose A€ U where U is open and f(X)(U) =
Then 1 = f[X(U')] = X[f~1(U")]. Therefore

AeCIf U] < U,

since the latter is closed. But this is a contradiction.
Therefore A€ o[f(X)]. The inclusion in the other
direction follows from (b).

The last theorem was a generalization of Theorem
4.2 and the corollary to Theorem 4.3 (Ref. 11). The
next theorem is an existence theorem which states
that we can find simultaneous o-homomorphisms
whose spectra are any closed sets we would like.

Theorem 4.2: Let K, be a nonempty closed subset
of the topological space Q,, a€A4. If L has an
infinite number of disjoint propositions, then there
exist simultaneous c-homomorphisms X, :B({2,) — L,
o € A, such that K, = o(X)).

Proof: Fix f§ € A. Since {, has a countable basis for
its open sets, K; has a countable dense subset {p,}.
Let {a,} be a countable set of mutually disjoint non-
absurd propositions for which Xa; = 1. Define the o-
homomorphism Xj:B(Qz) — L (it is easily checked
that this is a s-homomorphism) as follows:

Xp(A) = Z{a;:p; e A}, A eB(Qy).

Now let p,e U, where U is open in Qz. Then
X,(U) # 0 and hence {p,} < o(X}); and since o(X}) is
closed, K; = Cl{p;} < o(X,). Also X,(K;) =0 and
hence K, = a(X,)'. Thus ¢(X;) < Kz and K; = o(Xp).
Now for each €A define a o-homomorphism
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X,:B(2,) — L with range in {a,} as above. These X,
are all simultaneous and X, = o(X,).

Let X:B(Q)—L be a o-homomorphism and
u:Q — C a Borel function. The variance V,,[u(X)] of
u(X) in the state m is

Valu(X)] = mu?(X)] — (m[u(X)])*.

A state m is an eigenstate of X corresponding to the
eigenvalue w € Q if m[X(A)] = 1 for every A € B(Q)
containing w. Of course, the eigenvalues of X are in
a(X)and are a generalization of the point spectrum of
a self-adjoint operator. Physically, an eigenvalue of
an observable x corresponding to the eigenstate m is
a value which x attains with certainty in the state m.
Intuitively, one would expect that if m is an eigenstate
for X, then the uncertainty, or variance, of X in the
state m is zero. The next theorem shows this and
further characterizes eigenstates.

Theorem 5.3: m is an eigenstate of X if and only if
V,.[u(X)] = 0 for every real Borel function «.

Proof: Let m correspond to the eigenvalue w,, and
define the Borel set A = = {w: u(w) = u(w,)}. Since
wy € A, we have

mlu(X)] = f u(@)m[X(dw)] = u(w,).
Similarly,
mlu}(X)] = fA WX (wym[X(du)] = u*(ay)

and
Viu(X)] = 0.

Conversely, suppose V,[u(X)] =0 for every real
Borel function. If AeB() and y, denotes the
characteristic function of A, then V,[xa(x)] = 0.
Therefore,

m[X(A)] = m[yRA(X)] = mxa(X) = m[X(A)P

and m[X(A)] =0 or 1 for every Ae B(Q). Let
{P;:i=1,2,--'} be the basis sets for which
m[X(T')] = 1. Now m[X(T'; N I'y)] = 1, since other-
wise
m[X(T; U Ty)]

=m{X[(T,~ T, nTyY v T, — T NTYLL

= m[X(T)] + m[X(I')] = 2,

which is impossible. By induction, m[X (2,

and
[0 -t ()] -

Let woe N2, T';. Since Qis T, , w, is closed and hence

L)l=1
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wy € B(Y). Suppose m[X{w,)] = 0. Then
m[X(Ty — {weh] = 1.

Since Ty — {w,} is open, it is the countable union of
basis sets A;, i =1, 2, -+ -. But at least one of these
basis sets must satisfy m[X(A;)] = 1. But this is a
contradiction, since w, is in every such basis set,
Therefore, m{X(w,)] = 1, and m is an eigenstate.
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APPENDIX A. ONE-PARAMETER GROUPS
OF DERIVABLES

The identity derivable Iis the unique derivable which
satisfies o(J) = {1}. A derivable x is bounded if o(x)
is a bounded set. If x is bounded, we define the norm
of x to be |x| = sup {|Al:A€o(x)}. It is shown in
Ref. 11 that |x| is indeed a norm. A one-parameter
group of derivables is a family {x,:t € (—o0, )} of
bounded simultaneous derivables which satisfies
xo =1 and x,., = x.x, for all s, te(~—ow, ). A
one-parameter group of derivables is continuous if
m(x,) is a continuous function of ¢ for every state m.

Lemma I.1: If x, is a one-parameter group of
derivables, then

A = inf log |x,|/t = lim log [x,|/t < c0.
t>0 {00

Proof: Sincelog |x,,| = log|x.x,] < log (Jx] Ix,]) =
log |x,| + log |x,], the function ¢ — log | x,| is subaddi-
tive on [0, 0}, and the result is a well-known property
of subadditive functions.

Theorem I.2: x, is a continuous one-parameter
group of derivables if and only if there exists a
derivable y such that e® is bounded and x, = e%,
te (—oo, o).

Proof: We first prove necessity. Applying Theorems
3.3 and 4.1 (Ref. 11), there exists a measurable space
(Q, 4), a o-homomorphism h:4 — L, and 4 measur-
able functions f;-such that |x,| = sup {|fi{w):w € Q},
x,(E) = h[f;X(E)] for all E€ B(C), and f, (w) =
[i(w)fy(w) for we N where A(N') = 0. Since for
fixed w € N, f, o) = f,(w) fy(w) for s, t rational, we
have fy(w) = e?®?, r rational. Now g is an A4-
measurable function, and hence E — y(E) = h[g~1(E)]
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is a derivable. Applying Theorem 3.3 (Ref. 11), we get
x,(E) = h{f;X(E)] = h(e*)Y(E)] = e"(E), and hence
x, = e for ¢ rational. Now

Re g(w) = Re log f,(w)[t = log | fi(w)l/t
< log [sup { fi(w): 0 € Q}/t = log |x,|/t,

t positive rational. Hence
Re g(w) < lim {|x;|/¢:¢ rational, t — o0} = 4, < 0.

Letting
S={A:Reld < 4},

we have m[y(S)] = m[A(g=2(S))] = 1. For a fixed
te (0, o), A—e" is a bounded function for 1€ S.
Now let ¢; be a sequence of positive rationals con-
verging to ¢, and let m be a state. Then, by continuity
and the dominated convergence theorem,

m(x,) = lim m(x,) = lim m(e),
= Iimfe‘i‘m[y(dy)] =flim emly(dl)] = m(et).

Since x, and y are simultaneous, x, = e*, A similar
argument is used for negative ¢. For sufficiency,
suppose x; is bounded, x;=e", te(—w0, w).
Certainly, x, = I and

Xsp(E) = e®HY(E) = p{l:e®+0% ¢ E},
= p{l:e*e'* € E} = e%eW(E) = x,x,(E)

for all Ee B(C). Hence x,,, = x,x,. Now let ¢ be
positive and let #; be a sequence of positive numbers
converging to #. Letting ¢, > , for large enough 7, we
have #; < 1,. Since x, is bounded, applying Theorem
5.4 (Ref. 11), there is a constant X and a set E € B(X)
such that y(E) = 1 and |exp (t,E)| < K. Hence, for
i large lexp (t;E)] < K. Applying the dominated
convergence theorem,

lim m(x,) = lim (¢) = lim f &*miy(dA)],
E

=J lim e*m[y(dD)] = m(e") = m(x)).
&

A similar argument holds for negative z. Hence x, is
a continuous one-parameter group.

The derivable y in Theorem 1.2 is called an
infinitesimal generator of the one-parameter group x;.
We have thus shown that a one-parameter group of
derivables has an infinitesimal generator if and only if
it is continuous. It is not known whether an infinites-
imal generator of a continuous one-parameter group
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of derivables is unique, although we now derive a kind
of uniqueness resuit.

Theorem 1.3: Let x, be a continuous one-parameter
group with an infinitesimal generator y. Then m(y)
exists if and only if lim, ,, m[(e®? — I)/t] exists; when
they exist, m(y) = lim,_,, m[(e** — I)/t].

Proof: Suppose m(y) = | m[y(dA)] exists. Since
lim (e** — 1)t = A pointwise, applying Fatou’s lemma
our result follows. The converse follows in a similar
fashion.

Corollary 14: Let y, and y, be infinitesimal
generators of a continuous one-parameter group.
Then m(y,) exists if and only if m(y,) exists; when they
exist, m(y,) = m(y,).

Corollary 1.5: Let x, be a continuous one-parameter
group with an infinitesimal generator y. Then
(d/dt)[m(x,)]|, exists if and only if m(y) exists. When
they exist, m(y) = (dfdt)[m(x,)]}s.

Proof:

(d/anm(x)]lo = Lim [m(x,) — m(xo)]/t,

= lim [m(x,) — 1]/t,
= lim m[(x; — 1)/1],
= lim m{(e” — D)/1],
= m(y).

It is easily seen that the derivables of a continuous
one-parameter group are unitary if and only if any
infinitesimal generator is of the form iy where y is an
observable.

Corollary 1.6: Let {x,: A€ (— o0, 00)} be a continuous
one-parameter group of unitary derivables with
infinitesimal generator p. An ¢-homomorphism X <
x, for all A € (— 0, o) if and only if X < p.

Proof: The proof follows, using the methods of
Theorem I.2.

APPENDIX B. ABSOLUTELY CONTINUOUS
o-HOMOMORPHISMS

Let G be a locally compact group and let H be a
closed subgroup of G. We form the space of left
cosets G/H, with the topology induced by the canonical
mapping h from G into G/H. The Borel subsets
B(G/H) of G[H are generated by the open sets already
defined on G/H. We denote the Haar measure on
G by u.
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Lemma I1.1: If v is a o-finite Borel measure on G/H
and if u[h~1(A)] =0, A € B(G/H), then »(gA) =0
for p almost every g € G.

Proof: It suffices to assume that » is finite. Suppose
1A 2(A)} = 0. Let x4 be the characteristic function of
A and apply Fubini’s theorem to the Borel function
1a(g1x) on Gx(G/H):

0= f GO I(d),

= f { f a(E™ X)ﬂ(dg)] w(dx),
- f [ f m(g‘lx)v(dx)}u(dg),

= f WgA)u(dg).

Since g — »(gA) > 0, we have »(gA) = 0 u almost
everywhere.

Let X:B(G/H)— L be a o-homomorphism. Then
we say that X is absolutely continuous with respect to a
measure » on B(G/H) if »(E) = 0 implies X(E) = 0.

Lemma I1.2: Let G be a locally compact group, H a
closed subgroup of G, and X:B(G/H)— L a o-
homomorphism such that g — m[X(gA)] is continuous
for all me M, A e B(G/H). Then X is absolutely
continuous with respect to any quasi-invariant
measure on G/H.

Proof: Let A € B(G/H) satisfy u[h~'(A)] = 0. Now
if me M, then m[X(")] is a finite measure on G/H.
Applying Lemma IL1, m[X(gA)] = 0 for u almost
every g € G. Let U be a neighborhood of the identity
e € G. Since open sets have positive Haar measure,
there is a point g,; € U such that m[X(g,A)] = 0. In
this way we obtain a generalized sequence g,, con-
verging to e, for which m[X(g,A)] = 0. Applying the
continuity, we have

0 = m[X(g,A)] = m[X(eA)] = m[X(N)]

and hence m[X(A)] = O for every m e M, and thus
X(A) = 0. Now Lemma 1.3 (Ref. 12) states that if »
is quasi-invariant on G/H, then »(A) = 0 if and only
if u[h~2(A)] = 0. Hence X is absolutely continuous
with respect to ».

Theorem I1.3: Let X be the o-homomorphism of
Lemma II.2, » a quasi-invariant measure on G/H, and
Ly(v) the Hilbert space of complex-valued square-
integrable functions on G/H. Then there is a map
m-—>m of M into Ly(») and a projection-valued



1858

measure X(-) from B(G/H) into the orthogonal
projections on L,(¥) which satisfies (a) m[X(A)] =
(rh, X(A)ym) for all A € B(G/H). If u is a real Borel
function on {2, there is a self-adjoint operator U on
L,(») with resolution of identity U(:) such that (b)
m[u(X)(E)] = (, U(E)m) for all E € B(R); (c) when
it exists, m[u(X)] = (h, Urh).

Proof: For me M, m[X(:)] is an absolutely con-
tinuous measure with respect to ». Applying the
Radon-Nikodym theorem, there is a nonnegative
Borel function f on G/H such that m[X(A)] = [, fdv
for all A e B(G/H). Define the function m(l) =
+[fME to get mIX(A)] = fr()2dv for all
A € B(G/H). We now define X(A):Ly(¥) — Ly(») by
X(A)p(d) = xa(Dp(A), where x, is the characteristic
function of A. It is easy to check that X(A) is an
orthogonal projection on L,(») and that A — X(A) is
a projection-valued measure. We then have

m{X(A)] = f LAY dv = (, Z(AY).
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(b) follows directly from (a). To prove (c) we have
mu(0] = [uhmix(@n) = [ud | oot as,
- f u(l) f RN dy = f w(A)(rh, R(dAYY,
- <m f u(l))?(dl)rﬁ> = (i, Ui,

where U is the self-adjoint operator whose resolution
of the identity is X[u2(")].

SUMMARY

An axiomatic model for quantum mechanics is
formulated using physically significant axioms. The
model is a slight strengthening of Mackey’s first six
axioms, together with two axioms which ensure the
existence of coordinate and momentum observables.
Coordinate and momentum observables are defined.
It is then shown that as far as the statistical properties
of these observables in certain states are concerned,
the abstract axiomatic model may be represented by
the usual Hilbert space formulation.
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It is observed that the in and out states of a particle of energy k%/2m, entering or leaving a Coulomb
field along the +z direction, are eigenstates of L; with eigenvalue 0, and of A,, the third component of
the Runge-Lenz vector, with eigenvalues 3o + ik/m, respectively. From this characterization and the
commutation relations of the symmetry group, the phase shifts are easily obtained algebraically.

E show that the algebra of the symmetry group
of the Kepler problem not only determines the
energy levels completely, but also the phase shifts.

In 1926 Pauli* showed that the bound-state spectrum
of the quantum-mechanical nonrelativistic Kepler
problem could be obtained from the commutation
relations of the angular momentum vector and
the Runge-Lenz vector. Later on it was recog-
nized? that this algebra generates the O(4) symmetry
group for bound-state energy levels and O/(1, 3) for
continuum levels, and it was realized® that the

* Work performed under a Ford Foundation grant.
1 W. Pauli, Z. Physik 36, 336 (1926).

2 V. Fock, Z. Physik 98, 145 (1935).

3 V. Bargmann, Z. Physik 99, 576 (1936).

separability of the wave equation in spherical and
parabolic coordinates is due to this symmetry. A
recent review* gives a detailed exposition of the group-
theoretical approach.

Let the Hamiltonian be

H = p*2m — ajr )]
with the canonical commutation relations
[x;, x;} =0, [Ptu] =0, [p;,x;]= _iaij‘ )

The angular momentum vector L and the Runge-
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L=xxp, A=(2m)pxL—Lxp)—af, (3)

4 M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330, 346
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measure X(-) from B(G/H) into the orthogonal
projections on L,(¥) which satisfies (a) m[X(A)] =
(rh, X(A)ym) for all A € B(G/H). If u is a real Borel
function on {2, there is a self-adjoint operator U on
L,(») with resolution of identity U(:) such that (b)
m[u(X)(E)] = (, U(E)m) for all E € B(R); (c) when
it exists, m[u(X)] = (h, Urh).

Proof: For me M, m[X(:)] is an absolutely con-
tinuous measure with respect to ». Applying the
Radon-Nikodym theorem, there is a nonnegative
Borel function f on G/H such that m[X(A)] = [, fdv
for all A e B(G/H). Define the function m(l) =
+[fME to get mIX(A)] = fr()2dv for all
A € B(G/H). We now define X(A):Ly(¥) — Ly(») by
X(A)p(d) = xa(Dp(A), where x, is the characteristic
function of A. It is easy to check that X(A) is an
orthogonal projection on L,(») and that A — X(A) is
a projection-valued measure. We then have

m{X(A)] = f LAY dv = (, Z(AY).
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(b) follows directly from (a). To prove (c) we have
mu(0] = [uhmix(@n) = [ud | oot as,
- f u(l) f RN dy = f w(A)(rh, R(dAYY,
- <m f u(l))?(dl)rﬁ> = (i, Ui,

where U is the self-adjoint operator whose resolution
of the identity is X[u2(")].

SUMMARY

An axiomatic model for quantum mechanics is
formulated using physically significant axioms. The
model is a slight strengthening of Mackey’s first six
axioms, together with two axioms which ensure the
existence of coordinate and momentum observables.
Coordinate and momentum observables are defined.
It is then shown that as far as the statistical properties
of these observables in certain states are concerned,
the abstract axiomatic model may be represented by
the usual Hilbert space formulation.
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Algebraic Calculation of Nonrelativistic Coulomb Phase Shifts
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It is observed that the in and out states of a particle of energy k%/2m, entering or leaving a Coulomb
field along the +z direction, are eigenstates of L; with eigenvalue 0, and of A,, the third component of
the Runge-Lenz vector, with eigenvalues 3o + ik/m, respectively. From this characterization and the
commutation relations of the symmetry group, the phase shifts are easily obtained algebraically.

E show that the algebra of the symmetry group
of the Kepler problem not only determines the
energy levels completely, but also the phase shifts.

In 1926 Pauli* showed that the bound-state spectrum
of the quantum-mechanical nonrelativistic Kepler
problem could be obtained from the commutation
relations of the angular momentum vector and
the Runge-Lenz vector. Later on it was recog-
nized? that this algebra generates the O(4) symmetry
group for bound-state energy levels and O/(1, 3) for
continuum levels, and it was realized® that the

* Work performed under a Ford Foundation grant.
1 W. Pauli, Z. Physik 36, 336 (1926).

2 V. Fock, Z. Physik 98, 145 (1935).

3 V. Bargmann, Z. Physik 99, 576 (1936).
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theoretical approach.
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and are found, from (1) and (2), to satisfy

(L, H] =0, (“a)

[A,H] =0, (4b)

Ly, L)) = ieyp Ly, (52)
Ly, 4;] = iegdy, (5b)
(4, 4] = —iey, L, (2H|m), (5¢)
L-A=0, (6a)

Al = (L% + 1)(2H[m) + «2, (6b)

as is well known.

Equations (4) show that L and A commute with H,
and in the remaining relations (5) and (6) no other
variables appear. Consequently, we may restrict
ourselves to the subspace where H has a definite value
and write

H=k2m, k>0, U

since we are concerned only with the continuum, It is
convenient to renormalize A according to

= (m/k)A, ®

so Eqgs. (5) and (6) become
[Lis le = ieiiklﬂh (93)
[L;, K] = i€k, (9b)
K, Kj] = —ieyply, (90)
K-L=0, (10a)
L? — K2 = —a?m?fk? — 1, (10b)

or

k2/(mta?) = — (L% — K2 4- 1)1, an

The Lie algebra defined by Egs. (9) is that of O(1, 3),
or the Lorentz group: The representations of this
algebra may be found in Naimark.® Their derivation
may be understood as follows. Choose a basis where
L2 and L, are diagonal, say |/, m). Then by virtue of
Eq. (9b) and the Wigner-Eckart theorem, the matrix
elements of K are expressed in terms of the reduced
matrix elements K, ;, K; ;, K;_; ;. Hermiticity of K
says that X, , is real and expresses K, ; in terms of

K}, the phase of which is fixed by convention.

5 M. A. Naimark, Linear Representations of the Lorentz Group
{American Mathematical Society, Providence, Rhode Island, 1957),
Chap. 3, Sec. 2, No. 3, Eqs. (51)-(55). Irreducible representations of
the Lorentz group are conventionally labeled by (/, ¢), where / is
a nonnegative integer or half-integer and c is an arbitrary complex
number. The Casimir invariants are KL =ilyc and L* — K=
4 c*— 1 FromEq. (10a)wehavec=0orfy=0.1fc=0, Eq.
(11) gives k¥ma)~? = —I;"% < 0, which contraglcts the assumption
of posmve energy. Hence lo == 0 and ¢? = —aim?/k? < 0,s0 ¢ is
pure imaginary. This defines a unitary representation in the prin-
cipal series.
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Equation (10a) determines X, ;, and Eq. (9c) gives a
recursion relation for Kj,, ; which terminates at some
minimum value /,. The only result which is required
is

Ky 11, 0) = zl Z +°‘

41’

. (l + 1 + o
il + 1)[ T 1] 14+1,0, (12)
where &' = am/k = «fv.

Let us now consider the characterization of the in
(or out) scattering state corresponding to a plane wave
entering (or leaving), traveling in the +z direction.
Because L, and K are commuting constants of the
motion, whatever value they have for appropriate wave
packets before (or after) scattering, they will have
these values at all times and they are suitable labels
for the in (or out) states. If Ly = —i(x x V), is
applied to a free plane wave exp (ikz), one finds
Lgexp (ikz) = 0, so

Ly [ksou) = 0. (13a)
Similarly for the first term of A, Eq. (3), one finds,®
with p = —iV,

(12m)(p x L — L x p)g exp (ikz) = (ik/m) exp (ikz).

Il

Now consider a wave packet traveling in the +z
direction toward (or away from) the origin, and which
is asymptotically far away. Then £;, the component
of the direction £ along the z axis, will have the value
—1 (or +1). Hence, since

A= (px L — L x p)s2m — af,,
we have
Ag |kEms) = (Lo + ikjm) |kEme),
K, lkfou) = (Lam[k + i) |kzhu).
Equations (13) provide an adequate characterization
of the in and out states, as we see later.

Consider the expansion of the scattering states into
spherical waves. Because of Eq. (13a), only values

(13b)

8 At first sight it is surprising that the Hermitian operator on the
left-hand side should have an imaginary eigenvalue. However, the
plane wave is not an element of the Hilbert space, so there is no
contradiction. This operator also has a complete real spectrum.
These remarks apply to 4; and K, as well. Use of complex eigen-
values is actually implicit in the standard treatment, in which the
wavefunction that asymptotically approaches a plane wave is
factored in parabolic coordinates. The separation constant is
complex. Equation (13b) states that, although 4, commutes with
the Hamiltonian and is thus a constant of the motion, it yields
different eigenvalues when applied to in and out states. Consequently
Aj does not commute with the S operator, as is easily verified by
applying it to both sides of Eq. (18). In general, of course, one does
not expect every operator that commutes with H to commute with
S, because if this were true, then, for a fixed energy, § would be a
constant multiple of the identity, and a monochromatic beam
would not scatter at all.
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L, = m = 0 contribute, and we have

k2™ = Z@l+ e |1, 0), (142)

k5% = z Q@1 + DSt |1, 0).

To determine the expans1on coefficients a, we use
Egs. (12) and (13b) to find ai“, the result for @ is
obtained by the substitution &’ — —a':

K, k2™ = i3 @+ D -
1
12 + alz

b
s % in _ bt rx” _
= i3+ ] {l[(21+ o 1)] 11,0
(l + 1)2 + m;z %
—a4 | UE D+ 1,0,
¢+ )[(21 + DI+ 3):' I+ >}

Upon equating coefficients of the independent
vectors |/, 0), one obtains the recursion relation

ot = (1 + D70+ D + T
x [ + 1)1 — ia)a™ + I + «Hal)].
For I = 0 this yields
g = [(1 — i)/l + ia)Pay
The general term is easily proven by induction to be
a'® = [(1 — i)Y + i) PG (— i) ol
We choose the undetermined over-all phase factor

a = [(—ie)! )],

(14b)

ia')a;" |1, 0),

so that
al® = [(1 — i)Y + i) (15a)
By the substitution o’ — —oc';/
W= [+ i) — i), (15b)
which gives the desired expansion coefficients.
The S matrix is defined by
S, K) = (kU | ki®) (16)
and the S operator by

S(k', k) = (k'°" § |k, an

DANIEL ZWANZIGER

So from Eqgs. (16) and (17),

k') = S [k (18)

Upon substituting this into Eqs. (14) and recalling
that S commutes with L, so that

S, my = 8, |l, m)y = exp (2i6) |, m),
one finds
al® = S,a%", (19)
S, = exp 2id;) = (I — i)l + i)}, &' = am/k.
(20)

This is the familiar form for the Coulomb phase shifts.
The S, have been determined up to an arbitrary com-
mon energy-dependent phase factor which is fixed by
the phase convention between states of different
energy. Equation (20) gives the usual one. The
scattering amplitude f(k, 6) is obtained from

fik, 8) = Qiky™ S (2 + 1) exp (2i8,)P,(cos 6),
6#0, (21)
which yields
flk, ) = —=
k sng
X exp [i(am/k) In sin® g} ((::“T"/‘Ig")' , (22

as may be verified by projecting with the P,(cos 6) and
using Rodrigues’s formula. This is the standard
expression for the scattering amplitude. It has been
obtained purely algebraically.
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Refractive Index, Attenuation, Dielectric Constant, and
Permeability for Waves in a Polarizable Medium*

Davp J. VEZZETTI
Department of Physics, University of Illinois at Chicago Circle, Chicago, Illinois
AND

JosepH B. KELLER
Courant Institute of Mathematical Sciences, New York University, New York, New York

(Received 18 January 1967)

A new method is presented for calculating the refractive index, attenuation, dielectric constant, and
permeability for electromagnetic waves in a medium of polarizable particles. It is similar to the method of
Yvon and Kirkwood for finding the static dielectric constant. The main merit of the method is that it
avoids the statistical hypotheses used in such calculations by Lorentz, Reiche, Hoek, Rosenfeld, and
other authors. In addition, it permits the calculations to be continued to any degree of accuracy. We
first use the method to obtain the dispersion equation as a power series in the molecular polarizability.
The nth term in this series involves the distribution function of n + 1 particles. The terms of first and
second degree are written out explicitly in terms of the two- and three-particle distribution functions.
When terms of second and higher degree are omitted and the result specialized to particles with a scalar
electric polarizability and zero magnetic polarizability, the dispersion equation agrees with that of
Rosenfeld. When terms of second degree are retained and the static limit considered, the result reduces
to that of Yvon. We next use the method to obtain the dispersion equation as a power series in the
particle number density, which seems to be new. To obtain it we introduce “pure” n-particle scattering
functions, which are analogous to the Ursell functions of statistical mechanics. This permits us to obtain
the density expansion directly in a form simpler than is obtained by resumming the polarizability series.

SEPTEMBER 1967

1. INTRODUCTION

FUNDAMENTAL difficulty in the theoretical

calculation of the refractive index, dielectric
constant, and permeability of a polarizable medium
is that of determining the average electric or magnetic
field acting upon a molecule of the medium. This
average field is called the effective field, since it is the
field which polarizes the molecule. Most authors have
employed the hypothesis, first stated explicitly by
Lorentz, that the effective electric field equals the
average electric field plus one-third the average electric
polarization. However, for the case of static fields,
Yvon! and Kirkwood? introduced a systematic method
of calculating the effective field which avoids this
hypothesis. This method has been used by Green,?
Brown,*% and de Boer et al.” Our objective is to
present a similar systematic method of calculation
for time-harmonic fields. This method is similar to the
one introduced by Keller®® to treat waves in discrete

* The research in this. paper was supported by the National
Science Foundation under Grant No. GP 3668 at New York
University.

1 J. Yvon, Compt. Rend. Acad. Sci. (Paris) 202, 35 (1936).

¥ J. Kirkwood, J. Chem. Phys. 4, 592 (1936).

3 H. S. Green, in Handbuch der Physik (Springer-Verlag, Berlin,
1960), Vol. 10.

¢ W. F, Brown, J. Chem. Phys. 18, 1193 (1950).

5 W. F. Brown, J. Chem. Phys. 21, 1121 (1953).

¢W. F. Brown, in Handbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. 17.

7 J. de Boer, F. Van der Maesen, and C. ten Seldam, Physica 19,
265 (1953).

8 J. B. Keller, Proc. Symp. Appl. Math. 13, 227 (1962).

* J. B. Keller, Proc. Symp. Appl. Math. 16, 145 (1964).

and continuous random media and employed by
Karal and Keller.10:1

We first use our method to obtain the dispersion
equation as a power series in the molecular polariz-
ability. The nthterm involves the (n + 1)-particle distri-
bution function. The linear and quadratic terms
reduce to the result of Yvon' in the static case,
provided we specialize our result to particles with
zero magnetic polarizability and scalar electric polariz-
ability. For such particles and nonstatic fields the linear
term alone reduces to the result of Rosenfeld.’? Thus
our result provides the generalization of Yvon’s result
to time-harmonic fields. It also justifies Rosenfeld’s
result and shows when it is valid and how to improveit.’

We also use our method to obtain the dispersion
equation as a power series in the particle number
density. This virial expansion can be obtained by
resumming the polarizability series. However, we
obtain it directly, and in a simpler form, by introduc-
ing “pure” n-particle scattering functions. They are
analogous to the Ursell functions of statistical mechan-
ics and can probably be used in other problems. The
density expansion seems to be new. de Boer et al.?
previously obtained a double series in polarizability
and density for the static dielectric constant by ex-
panding the terms in Yvon’s polarizability series in
powers of the density.

10 F, C. Karal, Jr., and J. B. Keller, J. Math. Phys. 5, 537 (1964).

11 J, B. Keller and F. C. Karal, Jr., J. Math. Phys. 7, 661 (1966).

13 1. Rosenfeld, Theory of Electrons (North-Holland Publishing
Company, Amsterdam, 1951).
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Some authors have used, instead of the Lorentz
effective field hypothesis, a different one. This hy-
pothesis states that the average field acting on a given
fixed particle, when a second particle is also held
fixed, is the same as if the second particle were not
held fixed. This hypothesis was used by Reiche,®
Hoek,* and Rosenfeld,'? and in other applications
by Foldy'® and Twersky,® while a slightly different
version was used by Lax.1” We have already mentioned
that this method yields results which are correct to
the first order in the polarizability.

The dispersion equation has one solution for the
refractive index n corresponding to a transverse
electromagnetic wave, and possibly others corre-
sponding to longitudinal waves. The complex index n
determines the phase velocity and attenuation of the
fields and the dielectric constant and permeability of
the medium.

Our analysis is restricted to molecules without
permanent moments and to fields so weak that they
do not affect the distribution functions.

2. FORMULATION FOR A GIVEN
CONFIGURATION

Let us consider the electric field E(x | x) and
magnetic field H(x | x*™) produced in unbounded
space by a wave Ey(x), Hy(x) incident upon N polar-
izable particles without permanent moments located
at the points x,, - * - , Xy . The symbol x' represents
the collection of all the particle coordinates x;, - - -,
Xy . We assume that the fields and the dipole moments
which they induce are time-periodic with angular
frequency w, and we omit the time factor e*®’. Let
p; = p;(x™) and m; = m,(x’) denote, respectively,
the induced electric and magnetic dipole moments of
particle i located at x,,i = 1, - - -, N. It follows from
Maxwell’s equations that the electric and magnetic
fields for a given configuration xV are, in rationalized
MKS units,

N
E(x | x'™) = Ey(x) — ki > GV(x, x,) - p;
j=1
N
+ iop Y, GP(x, x;) x m;, (2.1)
i=1
N
H(x | xV) = Hy(x) — in 3 6®(x, x,) x p,
j=1
N

— KB36Mx,x,) my. (22)
i=1

13 R, Reiche, Ann. Physik 50, 1, 121 (1916).

14 H. Hoek, Doctoral dissertation, Leiden (1939), Physica 8, 209
(1941).

18 L, Foldy, Phys. Rev. 67, 107 (1945).

16 V. Twersky, J. Math. Phys. 3, 700 (1962).

17 M. Lax, Rev. Mod. Phys. 23, 287 (1951).
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In (2.1) and (2.2) ¢, and y, denote the electric and
magnetic inductive capacities of free space, and k¢ =
w(eoo)? is the propagation constant or wavenumber
of a wave of angular frequency w in free space. The
functions G and G'® are, respectively, the dyadic
(tensor) and vector Green’s functions defined by
GY(x, y) = Gy — x) = iky(67)™* P.V. [AP(kor)I

— 3P (kg){I — 3rrr 2] + I(3kD)716(r), (2.3)
G¥(x,y) = Gy — x) = ikX(4ar) 'rhP(kor). (2.4)
In (2.3) and (24), r =y — x, r = |r|, [ is the unit
dyad or matrix, A{¥(k,r) is the spherical Hankel func-
tion of the second kind of order n, and P.V. indicates
that, whenever the term which it precedes is integrated,
the integral is to be defined as a principal value
integral. This means that the integral is the limit, as
€ tends to zero, of an integral with respect to y over
a domain excluding a sphere of radius e centered at
the point x.

In order to write (2.1) and (2.2) and succeeding
formulas in a more compact form, we define the
6-component vectors ;, F, and F, by

()
= {pi}’ F(X l x(IV)) = {E(X l X(N))}’
m, H(x | x™)
Fi) = ().
H(x)
Equations (2.1) and (2.2) then become the single
6-vector equation

F(x | x™) = Fy(x) + ﬁr(x, X)m.  (2.6)

1

2.5)

Here I'(x, x;) is the 6 X 6 matrix of the coefficients
appearing in (2.1) and (2.2).

We assume that the moments induced in particle i
are proportional to the fields E'(x, | ™), H'(x, | x™)
incident upon it. These fields are given by (2.1) and
(2.2) or (2.6) by setting x = x; and omitting the term
with j = i. For the sake of generality, we admit the
possibility that each moment is proportional to both
fields and write

p, = “(ll)El(xil X(N)) + “(12)Hl(xi | X(N)), (27)
m; = «VE(x, | xV) + «*PH'(x, | x¥). (2.8)

The coefficients «'/*) are the 3 x 3 polarizability
matrices or tensors of a particle, which can be com-
bined into the 6 X 6 matrix « defined by

1) gl12)

&= (am) a(22))'

By using (2.9) and (2.5), we can rewrite (2.7) and (2.8)
as

(2.9)

m = aF'(x, | x™). (2.10)
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Upon inserting (2.6) into (2.10), we obtain the
following matrix equations, which must be satisfied
by the moments p; and m,:

, N.
(2.11)

The delta-function part of the Green’s function GV
does not appear in (2.11), due to the exclusion of the
term with j = i from the summation and the fact that
x; # x; fori #j.

In terms of the moments, the electric and magnetic
polarizations P(x | x™) and M(x | x*V) are defined
by

= a{Fo(x,-) + 3T, x,)w,}; =1,
LE )

P(x | x™) = 3 p,d(x — x,), (2.12)

M(x [ x¥) = 3 md(x — x,). (2.13)

By introducing the 6-vector

(x| x*™) = {P(x | x™), M(x | ™)},
we can write (2.12) and (2.13) as

O | x*) = 3 7,8(x — x,). (2.14)

The electric displacement D(x | x¥) and magnetic
induction B(x | x*™) are given by

D(x | x™) = ¢ E(x | x'™) + P(x | x'M), (2.15)
B(x | x'™) = po[H(x | x™) + M(x | x™)]. (2.16)
Again introducing a 6-vector
D(x | xM) = {D(x | x¥), B(x | x¥)},
we can write (2.15) and (2.16) in the form
&l O
I

fD(x | X(N)) — {
0

} F(x | x™)

I o ™
+ {0 ”ol}n(x |x™). (217)

The problem of determining the fields first requires
solving (2.11) for the moments =, assuming that the
incident field Fy(x), the polarizabilities «, and the
particle positions x, are given. Then the fields F and
D are given by (2.6) and (2.17).

3. STATISTICS

We consider now an ensemble of particle configura-
tions and identify the macroscopic fields and polariza-
tions with the ensemble averages of the corresponding
quantities for a given configuration. We assume that
the N-particle probability distribution for the positions
x; is a symmetric function of the x; denoted by

'V(N)(Xl, e, xN) —_ ‘V(N)(X(N)).
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Then, as is usual in statistical mechanics, lower-order
distribution functions »"™(x;,--,Xx,) are defined

by
1,y = [0, ) it ity
4 3.1)
The one-particle density p(x,) is defined by
p(x;) = NvV(x)). (3.2)

In terms of p, the n-particle correlation function
g™ (x;, - "+, X,) is defined by

""(")(Xla T, X,)

~ (N—ET"X p(x) -« p(X)g (X1, e, %) (3.3)

With the aid of »V), the ensemble average of any
quantity 4(x | x™) is defined to be

(A | x™) = f A | XM ®) gx ™. (3.4)

A partial average with respect to the positions of all
but one particle, say the jth, is written as (4);. It is
given by

(A(X l X(N)»j —_ [v“’(x,)]‘l
X fA(x [ x MM (N dx, - - dX,_y dXypy o dXy .
3.5)
From (3.4) and (3.5) we see that, for any A(x | x'V),
(A4) is related to (4), by
(A | xM)) = f (A | xV)),»V(x,) dx,. (3.6)

We now use the preceding definitions and relations
to compute the ensemble averages of (2.17), (2.14),
and (2.6). By using (3.5) and (3.6), we obtain

D(x | xXV)) = { ”01}<F(x | X))
0

I 0 ™
+{0 Mol}(ﬂ(xlx », (3.7

<H(X | x(N)» = p(x)[<7ri>i]x,-=x ’
(F(x | X)) = Fy(x) + f T'(x, x,)p(x,)(m,)dx;. (3.9)

These three equations show that the macroscopic
fields and polarizations can be determined from the
function (rr;);, which is the average moment of particle
i when it is held fixed at x, . Therefore it is this function
which we wish to obtain.

€l

0

(3.8)

4. EQUATION FOR {m;);

-In order to determine the function (=,);, we must
solve (2.11) for =; and then average the solution over
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all configurations, holding x, fixed. It is tempting to
average (2.11) first in order to obtain an equation for
(m;); , but this yields

(M) = “{F olx)) + fP(xi s X;)p(X,)g (2)(xi S Y dx:i}'
4.1)

We see that this equation contains the additional
unknown function (w;);;, which is the average of
m;(x™) with respect to the positions of all particles
except those at x; and x;. Thus (4.1) is unsuitable
for the determination of (mr;);. An attempt to obtain
an equation for (m,),; introduces (=) , and continua-
tion of this procedure leads to a hierarchy of equations
for (m;)ixs (Ti)ijim» €tc. To avoid considering this
hierarchy, Reiche,!® Hoek,* and Rosenfeld!? replace
{m); by (m;); in (1). This yields an equation for
(;); - We do not use this procedure because it involves
an unjustified replacement and gives. no indication of
when the resulting equation is valid. In addition, it
does not provide any way to improve the result.
Instead of averaging (2.11) we proceed differently.
First we suppose that (2.11) can be solved for =;.
Then m; is a linear combination' of the quantities
Fy(x;), j=1,---, N, which we write in symbolic
form in terms of some linear operator Q as
m = QF,.
Then we average (4.2) with x, fixed to obtain

(70 = (QFy);. 4.3

This type of result, which expresses (), in terms of
the incident field, is useful for calculating the average
field scattered by a finite collection of particles, such
as those constituting a medium of finite size. However,
to determine the refractive index, dielectric constant,
and permeability, it is advantageous to consider an
infinite collection of particles constituting an un-
bounded medium. Doing so eliminates effects due to
the size and shape of the medium. In such a medium
there can be freely propagating waves or fields for
which F, = 0. They may be thought of as being
produced by sources at infinity. To determine them
we consider (4.3) as an integral equation for Fy(x)
with (;); given. We write its solution in terms of some
linear operator L as

Fy = L(”.')i .

To find the free or natural modes we seek solutions
of (4) with Fy = 0:

4.2)

“44)

Lim), = 0. 4.5)

We assume that the medium is statistically homogene-
ous. This implies that the operator L is translationally
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invariant. As a consequence its eigenfunctions are
plane waves, so we seek a solution of (4.5) of the form

(m); = Ae~thox, (4.6)

Here A is a constant 6-vector, k, is the propagation
constant in free space, and n is the complex refractive
index, which is to be determined along with 4. Upon
inserting (4.6) into (4.5) and multiplying the resulting
equation on the left by ™% we obtain

einko-x.-Le—-inko-x‘ 4 = 0

@.7)

This is a set of six linear equations for the components
of A. They have a nontrivial solution if and only if
the coefficient matrix is singular, which implies

det [e*mkoXiLe~tmhoXi] = Q. (4.8)

The matrix in (4.8) is independent of x; because L
is translationally invariant.

Equation (4.8) is the exact dispersion equation for
the refractive index » as a function of w, «, and the
statistical properties of the particle distribution. If
the medium is statistically isotropic, » is independent
of the direction of propagation, i.e., the direction of
k,. When n is found to satisfy (4.8), (4.7) can be
solved for 4. To make the formal results (4.7) and
(4.8) useful, we must calculate L. In the next two
sections we present two different ways of obtaining
series representations for L. The first yields a series
in powers of the polarizability «, and the second yields
a series in powers of p, the number density of particles.

5. EXPANSION IN THE POLARIZABILITY «

We now solve (2.11) for «; as a power series in «.
This solution can be obtained by iteration. Upon
writing the first few terms explicitly and indicating
that the rest are O(a*), we have

m; = aFy(x;) + “jglr(xu X, )oFo(X;)
+ a3 T(x;, x)a 3> DX, , X)aFo(xe) + 0.

i#i k#i

G

This equation is an explicit form of (4.2). Before aver-
aging this solution, it is convenient to rewrite it in
the form

m = aFy(x) + “g_r(xu X )oaFo(X,)
+ “jg P(xi ’ X,)aP(X, ’ xi)“Fo(Xi)

+a) P(Xi s X > D(x,, Xp)aFo(x,) + O(«).
= e (52)

Now we average (5.2) with x; fixed to obtain the
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following explicit form of (4.3):
(m); = aFo(x))

+o f T(x;, X,)p(x)8 (X, X)uFo(x,) dx,
+o f T(x,, x,)al(x;, %)p(x,)gP(X;, X,)aFo(X,) dx;

+a f I(x;, x,)el'(x,, %)p(x,)p(%)
x g®(x,, X;, X )aFo(X,) dx; dx, + O(a?).  (5.3)

Next we solve (5.3) for Fy(x;) by iteration or successive
substitution to obtain

aFy(x;) = {m); - “fF(Xi, xj)p(xj)g(z’(xi, xj)<77:i>;i dxj
—a f T(x;, x,)oT(x;, %)p(%,)g (s, X, ), d,

~a f T'(x;, x,)al(x;. %)p(X)p(xe)
X [g(s)(xi’ X;, X)) — g(z)(xi’ xj)g(z)(xj » Xl
X {my, dx; dx, + 0(®). (5.4)

This is an explicit form of (4.4).
For a statistically homogeneous medium we have

p(x;) = const = p, (5.5a)
g(z)(xi’ x:i) = g(z)(xi - xi)s (SSb)
g (x;, X5, X) = g®(x; — x;, X, — X;); etc.  (5.5¢)

By using (5.5) and the fact that I'(x,, x;) = I'(x; — x,),
and setting F, = 0, we can write (5.4) as

{my, — anF(xj - Xi)g(2)(x:i - xi)("i>7’ dx,-
—ap f M(x; — x)al'(x; — x,)2 (X, — X)(my); dx;

- “sz I'(x; — x)al'(x, — x,)

X [g(s)(xj — X, X — X,)
- g(Z)(X:’ - xz‘)g(z)(xk - x;)]
X {my, dX; dx, + 0@® = 0. (5.6)

Now we insert the plane wave form (4.6) into (5.6),
multiply on the left by ¢""**:, and obtain

{I _ apr(R)g(Z)(R)e_i"k“R dR
—ap J' T(R)«['(—R)g®(R) dR
_— f f TRT(S)g "R, S) — 2P (R)g?(S)]

x e~inkoe®+S) gp Jg 4 0(43)} A=0. (CN))
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Here R=x; — x; and S =x, —x;. This is an
explicit form of (4.7).

In order that (5.7) has a solution 4 which is not
zero, the determinant of the expression in braces must
vanish:

det [1 —ap f ['(R)g?(R)e "™ R R
—ap f I'(R)eT(—R)g®(R) 4R
— ap? j TR)2I(S)[g®(R, S) — g (R)2®(S)]

X ko (®S) JR gS 4 O(oca)] —0.  (58)
This is an explicit form of the dispersion equation
(4.8) as a power series in the polarizability «. Terms
beyond those shown explicitly can be found by con-
tinuing the iteration processes employed in solving
(2.11) and (5.3). This dispersion equation is one of
our main results. We solve it in Sec. 7.

The term proportional to «” in (5.8) corresponds to
a wave which is scattered » — 1 times before arriving
at x;. This term is composed of parts in which s
distinct particles are involved, where s =2,-:-, n,
and each such part is proportional to p*~*. Thus the
term proportional to «” contains parts proportional
to p, p% -+, p" L In order to obtain a series in
powers of p instead of the series in powers of « in
(5.8), we could rearrange the series in « by collecting
all terms proportional to each power of p. Since p”
occurs in infinitely many terms in (5.8), we would
have to sum an infinite number of terms to obtain
its coefficient. This summation can be described by
associating a diagram with each term. Each variable
X, in the term corresponds to a vertex labeled x;, and
each factor I'(x;, x,) corresponds to a line or bond
joining the vertices X; and x;. Then the term of order
o™ is obtained by summing contributions from all
diagrams with exactly » — 1 bonds, while the term of
order p” is obtained by summing contributions from
all diagrams with exactly n» 4+ 1 vertices. Although
this method of resummation of the series (5.8) can
be carried out, it is unnecessary. We now present a
different method which yields the density expansion
directly and in a more useful form.

6. EXPANSION IN THE DENSITY p

To obtain a density (or virial) expansion of the
dispersion equation, we begin with a different way of
solving (2.11) for ;. Let us define =, ,  to be
the exact solution of (2.11) for s particles at x,,
X;, """, X;_ . This solution is clearly a symmetric

function of #; - i,.,. The subscripts on iy oy
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must be distinct. For s = 1 and s = 2 we find from
(2.11) the explicit expressions

my = aFy(xy), (6.1
11 = [1 - dF(X“ Xj)dF(Xj, X )]_1
X [xFo(x)) + al'(x;, X)eFo(x,)]. (6.2)

In analogy with the Ursell functions of statistical
mechanics, we introduce functions ¢? which represent
all the “pure” s-particle scattering. Each ¢ is defined
to be the sum over iy« -+ i, 4 of 7, ..., , minus all
the =, with ¢ < s which are contained in

iy e

Ty dya Thus ¢ vanishes when any one of the

points X, - - - X,  is at an infinite distance from x;.
The ﬁrst few are given by
$i = i, (6.3)
N
¢§ = Z("f:i - 77%)’ (64)
P
N
$pi= 2 (nip-— iy — T + 7Y, (6.5)
IRV o
N
¢ = WEJ:I (mima — i — T — Mo
49kl distinct
+ 7 + e + m — m). (6.6)

For any s the average of ¢! with x, fixed is given by
(6.9) below.

In terms of the ¢! we can write the desired solution
N as

6.7)

Equation (6.7) is an identity because the ¢¢ are defined
so that the coefficient of each #}; ...,  in the sum is
zero if s < N and the coefficient of =} ..., s
unity. This is proved in Appendix A for the average
of (6.7) with x; fixed, which is all that we need, since
our derivation is based on this average. The proof of
(6.7) itself is similar. Equation (6.7) is a special case
of (4.2). Upon averaging (6.7) with x, fixed and using
(3.3) with p = const, we obtain

N — 9! S)
>1 2<¢t>. g (N - 1)'

X fg(’)(x,-, Xt Xy, ) dx,,
This result (6.8) yields (w;); as a polynomial in p,

which becomes a power series if N = oo.
Using the fact that 7, .,  is symmetric in its last

dx,_,. (6.8)
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s — 1 subscript, we obtain, from the definition of

>
: 1 S D oy
@oe= (3 21) e ()2 ) e
6.9
By using (6.9) in (6.8), we get
( 1)3 s—1 -1 "l
z>z 3_21(s _ 1)' gl[ ( 1) iil-.-il-l:l
X gx;, X, 0+ x;, ) dX; -0 dx, . (6.10)

The first few terms in this expansion are
(m)y = mi + Pf[‘"’?; — g™ (x;, x,) dx;

+ g f["?jk —2m; + m)
x g¥(x,, x;, X;) dx, dx, + O(p®). (6.11)

We now insert into (6.11) the expressions such as
(6.1) and (6.2) for the =, ..,  in terms of Fy. In
writing the result it is convenient to introduce the
abbreviation

Ty = al'(x;, X)) (6.12)

Then we obtain from (6.11)

(m); = aFy(x,) + pfg‘”(x,-, x)(1 — T;dTﬁ)—l
X T, laFy(x,) + TuaFo(x,)] dx;
+ p? f g (a)(xu X5, X)[C; nxF o(X;)

+ D;paFo(x,) + E;paFo(x,)] dx; dx;, + 0(p°).
(6.13)

The matrices C,;;,, D;;., and E;j are defined by

2 =1+Hy—~(0~-T,T)" — (1 - TT)",
(6:14)
2D = H (T + TaTi)(1 — TyTy)™

- - T,T)'T,, (6.15)

2Eijk = Huk[(Tu + T;k:ncj)(l - Tjkai)—lT!k + T;k]

— (1 = T T) ' Ty (6.16)

Here H,;, is defined by
Hyp=[1 = (1 = T ) (T + TaThd)(t — TpT)™
X (T + TpTII(L — T )™ (6.17)

We see that (6.13) is of the form (4.3).
Next we solve (6.13) for aFy(x,) in terms of (m,);
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by iteration and obtain the result:
AFx) = () = p [ 870, X)L = Ty
X TTylmy); + (75),) dx;
+ 1600, %)™ 0x0 001 = TT0™

X T;T (1 — T L) T, T
+ g“”(X.-, X5, X)Cin ()i dX,; dX,,

+ 5 f 22 (x;, %)2(X;, x)(1 — T, T)™

X T(1 — Ty ' Ty T,

+ g9x,, x;, %) D; (7 ,); dx, dx,

+ sz [g(z)(xi, Xj)g(z)(xn (1 — T;jTji)_l
x T,T;(1 — T,T)7'T,

+ g®(x;, x)g®(x;, x)(1 — T, T;)™

X T,(1 — TaT) Ty

+ g‘”("n Xy, X E; Ky dX; dXy, + 0(p).

(6.18)
This equation is of the form (4.4).

To obtain plane wave solutions of (6.18) we set
Fy =0, assume that the medium is statistically
homogeneous, insert for (r,); the plane wave form
(4.6), and multiply on the left by e®"ko*:, In this way
we obtain from (6.18)

{I —p f gP®)[1 — ' ®)oI(—R)«T(R)

x [«[(R) + e~"™oR] 4R + 0(p2)}A —=0. (6.19)

(1 + co) + #n°(1 + ¢,)
2

- 0 1
17 3e(n? — 1) (
0
: 010
M2=(’ﬂ),+—(1+c,) ~1 0 ol.
o/ (=1 00 of

The scalars cy(n), ¢,(n), and c,(n), which depend upon
n, are defined by

32 ©
ey = o =1 f R dR{g™(R) — 1}
in [1]
X h®P(koR)j(nk,R), m =0,1,2. (7.6)

Here h® and j, are, respectively, the spherical
Hankel function of the mth order of the second kind
and the spherical Bessel function of mth order. When
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The condition that (6.19) has a nontrivial solution
for A is the vanishing of the determinant

det {I —p f gP(®)[1 — aTR)al(—R)[al'(R)
x [a[(R) + ¢~"™R] 4R + 0(p2)} —0. (6.20)

The result (6.20) is the dispersion equation for n,
expressed as a power series in the particle number
density p. This is our second main result.

7. ANALYSIS OF THE DISPERSION EQUATION

We now analyze the dispersion equation (5.8) for
an isotropic medium, retaining only the constant
term and the term linear in «. In the isotropic case

g (R) = g (R). .0
Then (5.8) yields

det [1 —ap f T(R)gP(R)e=" R dR:I =0. (72)

To evaluate the integral in (7.2), we choose the z
axis along the direction of ko; and after some straight-
forward calculation, we can rewrite (7.2) in the follow-
ing explicit form, provided n # 1:

det{I—ap[ M, Mz]}=0. (7.3)
—M,juy €M,

This is the dispersion equation for »in a homogeneous,
isotropic medium, valid to first order in o. The matri-
ces M, and M, are defined by

0 0

+ ¢) + 30’1 + cp) 0 , (14
0 (1 + ¢o) = n*(1 + o)

(1.5)

the particle locations are uncorrelated, g®(R) = 1,
and then (7.6) shows that ¢,(n) =0, m=0,1,2.
Thus the c,(n) account for the correlations of
particle positions.

Let us now specialize (7.3) to the case in which
each particle has a scalar electric susceptibility y, and a
scalar magnetic susceptibility y,, . Then « is a diagonal
matrix given by

o= dlag {EOX¢ s €0Xes €oXes Xms Xm> Xm}' (7'7)
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Upon using (7.7) in (7.3), we can evaluate the deter-
minant explicitly and write it as the product of three
factors. Equating each of the three factors to zero
leads to the following three equations:

nt = 1 + 2px.[1 + co(n)] , (7.82)
1+ Zpg.[l + ci(m)]
n? = 1 + $pxmll + co(m)] (7.8b)

T+ #pxall + c(m)]”

n = %{Ge + G, + Gom
b [(Ge - ,Gm)2 + Gim + 2Gem(Ge + Gm)]%}

(7.8¢c)
In (7.8¢), G,, G,,, and G,,, are defined by
1 — 3px.[1 + co(n)]
_ Lol kel o

1= bpgmll + cx(m)]’

_ P xetmll + cx(m)P*
{1 = 3p1.[1 + (M1 — doxmll + cx(m)]}
(7.9¢)

Gem

Since ¢, ¢;, and ¢, depend on n, each of the equations
(7.8) must still be solved for n.

We may now insert each of the results (7.8) into
the matrix equation (5.7) and solve for the corre-
sponding constant vector A. From each 4, we can
compute the corresponding macroscopic polarizations
in the medium via (3.8) and (4.6). From (7.8a) we
obtain in this way

M(x)) = 0,
(P(x)) = akye i"kox,

(7.102)
(7.10b)

Here a is an arbitrary constant. Thus (7.8a) corre-
sponds to a longitudinal wave of electric polarization
and no magnetization. In a similar fashion, (7.8b)
leads to

(M(x)) = a'koe~"™*ox,

(P(x)) = 0.

(7.11a)
(7.11b)
Thus (7.8b) corresponds to a longitudinal wave of
magnetization and no electric polarization.

The relation (7.8¢) leads to a wave in which both
the electric polarization and the magnetization are
transverse. They are given by

(B()) = (@" x koje~imox,
(M(%)) = bk, x (P(X)).

(7.12a)
(7.12b)

Here a” is an arbitrary constant vector, not parallel
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to k,, and b is given by
_ {1 = 3pp[l + co(m} — {1 + Fpxl1 + co(m)]}

b 7
konpy(poco)*[1 + cy(n)]

(7.13)
Thus (7.8¢) is the dispersion equation for transverse
waves, while (7.8a) and (7.8b) are the dispersion
equations for longitudinal waves.

To solve any one of the dispersion equations (7.8)
for the complex refractive index n, we must use (7.6)
to determine the c,,(n) which depend upon the radial
distribution function g'®(R). Let us first consider
those cases in which the ¢,,(n) = 0. This is true for
uncorrelated particle positions, g'¥(R) = 1, and for
static fields, k, =0, as we see from (7.6). When
cp(m) =0, (7.8a)-(7.8c) with the minus sign all
yield n? = 1, which was excluded in deriving (7.3),
from which (7.8) follows. That case must be excluded
because the integral in (7.2) diverges when n% =1
since g (R) tends to one as R tends to infinity. Thus
only (7.8¢) with the plus sign remains when ¢, (n) = 0,
and it yields the following explicit expression for n?:

1— %ng 1 - %le

When the c,,(n) are not zero, we can solve (7.8c)
iteratively by first setting the c,,(n) = 0 and obtaining
the value (7.14) for n®. If we call this value n2, we
define n? by using c,,(n,) on the right side of (7.8c¢),
etc. This method should work well when k,, multi-
plied by the correlation length of the particle positions,
is small. In gases and liquids this length is of the
order of the range of interparticle forces. Therefore
when the free space wavelength is large compared
to the range of force, the iterative solution should
converge rapidly.

8. DIELECTRIC CONSTANT, PERMEABILITY,

AND AVERAGE FIELDS

The average electric and magnetic fields can be
obtained by averaging (2.1) and (2.2) with respect
to the particle locations. Let us average them and
also assume that the average electric polarization and
magnetization are plane waves of the forms

(P(x)) = Aeinkox, 8.1
(M(x)) = Be~i"kox, (8.2)
Then upon setting the external fields equal to zero,
we obtain from (2.1) and (2.2)
(EX)) = [&(n* — DIY{(P(x)) — n(n - (P(x)))
— (n/c) x (M(x))},
H(x)) = (@ — DT{M)) — n(n - (M(x)))
+ cn x (P(x))}. (8.4)
Here n = nky'%k, and ¢ = (uge,) L.

n

(8.3)
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From (8.3) and (8.4) we derive expressions for the
dielectric constant € and permeability  of the medium
formed by the particles. They are defined by

«(Ex)) = &(E(X)) + (P(x)), (8.5
#HEX) = p{(HX)) + M(x))}.  (8.6)

For the case of longitudinal electric polarization,
characterized by n x A =0 and B = 0, we obtain
from (8.3) and (8.4), (E(x))= —e(P(x)) and
{H(x)) = 0. Thus u is not defined, while (8.5) yields
€ =0. In the case of longitudinal magnetization,
characterized by n x B=0 and A =0, (8.3) and
(8.4) yield instead (H(x)) = —(M(x)) and (E(x)) =
0. Now e is not defined, while (8.6) yields u = 0.

In the case of transverse electric polarization and
transverse magnetization, for whichn- A=n-B =0,
we obtain from (8.3)-(8.6)

= 1o = =2 x oo, @)
{ w1 _ 1}(M(x)) —cnx (Px). (88)
Bt — 1
The condition that (8.7) and (8.8) be consistent yields
n? = pefpge,. 8.9)

To determine ¢ and u in the transverse case, we
combine (8.7) and (8.8) with (7.12). After a simple
calculation we obtain

eleg =14 (n2 — D1 + brkyjc)™?, (8.10)
wlue =1+ (n2 — 1)(1 + cnfbky)™.  (8.11)

Here b is given by (7.13). We note that (8.10) and
(8.11) satisfy (8.9).

Let us now specialize (8.10) and (8.11) to the case
in which y,,, = 0. Then (8.11) yields u/u, = 1, so that
(8.9) becomes €/e, = n? and (8.10) leads to

_ L+ dpplt + cm)]
< 1= 3pg[1 + cy(m)]
Another special case is that in which g, = 0. Then

(8.10) yields /e, = 1 and (8.9) becomes ufu, = n.
Thus (8.11) becomes
il 2

B _ o L Bogall + o)
Ho 1 — dpgmll + cy(n)]

The result (8.12) reduces to the Clausius—Mossotti
formula for € when ¢, = ¢; = 0, and (8.13) then re-
duces to the analogous formula for u. In fact, even
without y,, or g, being zero, (8.10) and (8.11) become
the Clausius—-Mossotti results when the ¢, = 0.

(8.12)

(8.13)

1869

This occurs when the particle positions are uncorre-
lated and also in the static case. Thus (8.12) and
(8.13) may be considered to be generalizations of the
Clausius—-Mossotti result from the static case to finite
frequencies or from uncorrelated to correlated particle
positions. To obtain an improvement over the
Clausius—Mossotti result in the static case k, = 0,
we must include the terms of order «2 in (5.8), which
involve g as well as g'¥. By doing so and assuming
a scalar electric polarizability and zero magnetic
polarizability, we obtain the result of Yvon,! which
has also been derived by Green,® Brown,*® and de
Boer et al.’

All the results in Secs. 7 and 8 could have been
obtained directly from (4.1) by setting (m,);; = (m,),
and seeking plane wave solutions of the resulting
equation. This is essentially the procedure followed
by Hoek and Rosenfeld® in deriving (8.12). The
advantage of our method of derivation is that it
permits us to obtain better results by keeping quad-
ratic and higher powers of the polarizability « in the
dispersion equation (5.8). It also shows that the
results (8.12) and (8.13) are valid when these higher-
order terms in (5.8) are negligible.

APPENDIX. PROOF OF AN IDENTITY

We have asserted that (6.7) is an identity, and we
now prove that this is so for the average of (6.7) with
x; fixed. This proof suffices for our purposes because
we used only (6.8), the averaged form of (6.7), in
our subsequent derivation. A similar proof can be
given for (6.7) itself. Upon averaging (6.7) with x,
fixed and using (6.9), we obtain
( N

Tidy - - -iN_1>i

N
= 2 <¢:>i>

S0 )ser (o

Upon rearranging the summation and then writing out
the binomial coefficients, we obtain

(A1)

. 1';-1)1' .

<7Tii1 iN- 1> .
N - prfS — 1
2<.,1 w2 ()i 2)
Y N=—D1¥ (=
"Ef Ay Z;(N — (s — DI’

(A2)

The sum over s can be rewritten and evaluated as
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follows:
N (_1)s+l _ (_1)21' N (N - l)!(_l)s——l
SN =G —=D (N=D)SWN—s)s—DHY

. ﬁ(—l)*-’(N )

=(N—l)!3:z s—1
1 N3N

=(N—l)!k§o(_l)( k )

= Oy (A3)
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When we substitute the result (A3) into (A2), we
obtain

y (N —1!
<7Tizlvl .. 'iN_1>l' = lgl <‘TT:1-1 . -h_l)i m IN®
= <7Til,v'1...,‘N_ )i' (A4)

Thus (A1) and, therefore, (6.8) are proved.
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The problem and treatment of integration ambiguities in the conventionally defined Yang-Mills
charges is demonstrated explicitly, using a non-Abelian solution of the Yang-Mills equations for a point
charge. The internal holonomy group J for this solution is noncompact and nonsemisimple, and the
solution is not expected to have a direct physical meaning. However, it provides a convenient example
showing important and quite unéxpected features of gauge theories of the Yang-Mills type, before
quantization. It is found that the number of unambiguously definable and comparable charges is less
than the dimension of J€ and less than the rank of X as well. If a gauge group € is present in the con-
ventional manner, i.e., ¥ < 8, this number of charges is less than the rank of the gauge group. Other
interesting features of the solution found are: discreteness of certain components of the gauge field, as a
result of regularity conditions together with the condition that the Yang-Mills charge density vanishes
outside a sphere of finite radius, and a harmonic oscillation of the other gauge components, while the
observable charges are steady. Higher-order charges are all found to be zero. No action principle is used
and no a priori particle fields are introduced, Use is made of the differential-geometric properties of gauge

fields.

L. INTRODUCTION

N gauge theories of the Yang-Mills type,! the raison
d’eétre for the gauge potentials is to define a gauge-

covariant derivative for internal nonscalar quantities.
More precisely, the gauge potentials define an
“internal” linear connection, i.e., a specification of
what is meant by equivalence of internal vectors at
neighboring events. One may choose this internal
linear connection a priori, once and for all, independ-
ent of the details of the physical situation, and it is
then only reasonable to choose it as integrable.? Then
a theory like special relativity results (where the
external connection is fixed and integrable), and
since the amount of nonintegrability of the linear
connection is expressed by the gauge fields,® the latter
vanish in this case.
"+ Work was begun at Giannini Scientific Corporation.

1 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

® A linear connection is called integrable if the result of an equiv-
alence displacement of any vector to any event is independent of

the displacement path.
3 The F,; of Yang-Mills (Ref. 1).

The alternate choice, made here and in all Yang-
Mills-type gauge theories, is to let the internal con-
nection be somehow dependent on the details of the
physics, as in general relativity. Another way of
putting this is that the internal connection carries
part of the physics (as the Christoffel symbols do in
general relativity). Then, in a local theory, one
generally expects the internal connection to be
nonintegrable and, hence, the gauge fields to be
nonvanishing. Since the internal connection expresses
a basic relation between internal spaces belonging to
adjacent events,* it should be considered fundamental.
If it truly can carry some of the physics as well, then
one is tempted to regard the internal connection as
part of the substratum which gives rise to particles
and interactions.

Whether or not the internal connection can carry
part of the physics is a question which preferably

4 A separate internal space is assigned to each event in order to
account for fields of internal vectors, tensors, etc., over event space.
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follows:
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When we substitute the result (A3) into (A2), we
obtain

y (N —1!
<7Tizlvl .. 'iN_1>l' = lgl <‘TT:1-1 . -h_l)i m IN®
= <7Til,v'1...,‘N_ )i' (A4)

Thus (A1) and, therefore, (6.8) are proved.
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should be approached by investigating the conse-
quences of the internal connection rather fully, in a
fashion which is, as much as possible, independent of
the contemporary theoretical framework of particle
physics. Along these lines, much can be done without
an action principle and without a priori introduced
particle fields, and it may not be necessary to interpret
the gauge fields as vector mesons. It has been shown®
that the internal connection by itself already gives rise
to a number of internal particle labels, whose prop-
erties of definability, comparability, and conservation
depend on the internal holonomy group J. This
group is defined as the result of equivalence transport
of internal vectors around closed loops in event space.
The covariant divergence-free currents which give rise
to the additive internal particle labels® belong to the
Lie algebra or the enveloping algebra of J€, so that
J is the relevant group for the algebra of the currents
or charges.

It has been remarked® that the conventional pro-
cedure of constructing total charges in a Yang-Mills-
type gauge theory may not always have physical
significance, on account of the ambiguity arising from
integration of nonscalar internal quantities. In the
present paper we show a solution to the Yang-Mills
equations for_a point charge, which is non-Abelian
and nonspherically symmetric, in contradistinction
to the Abelian and spherically symmetric solutions
obtained by Ikeda and Miyachi’ for O(3), and by the
writer for any gauge group.® This solution is used as
an example, showing that the difficulties associated to
the integration ambiguity can actually occur. The
method of the measuring operators® is applied to this
case, and it is found that the number of definable and
comparable charges is less than the dimension® of the
internal holonomy group ¥, and is even less than the
rank of J. For a gauge group equal to J this result is
in sharp contrast with that of the conventional
procedure, where before quantization there are as
many charges as the dimension of the gauge group,
while after quantization the number of mutually
assignable (i.e., commuting) charges is equal to the
rank of the gauge group.

II. GAUGE FIELDS

In order to describe multiplet fields over event space
as fields of internal vectors or tensors, we assign to
every event x*, k =0, 1, 2, 3, a separate n-dimen-

5 H. G. Loos, Ann, Phys. (N.Y.) 36, 486 (1966).

¢ Spin is here not considered an internal label.

7 M. Ikeda and Y. Miyachi, Progr. Theoret. Phys. (Kyoto) 27,
474 (1962).

8 H. G. Loos, Nucl. Phys. 72, 677 (1965).

* No quantization is considered.
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sional complex linear vector space (called the internal
space at x*); the components of the multiplet are
taken as the components of the vector or tensor in
internal space. Base transformations in internal space
are often called gauge transformations. In order to
make differentiation of an internal vector field
v(x*) an invariant process, a (gauge-)covariant deriv-
ative is defined as

Vv = 0,y — Iy, 0))

where 9, = 0/0x*, and T.(x*) are four matrix fields
which represent the internal connection. In (1), v is
a covariant internal vector ; for a contravariant internal
vector w and for a mixed internal tensor P one has

Viw = 0w + wI, @

V,P = 3P — [T}, P]. 3

Internal vectors v(x*) and v(x* + dx*) are- called
equivalent if at x*,

dx*V,v = 0. @

If equivalence displacement of internal vectors to a
remote event depends on the displacement path, then
the internal connection is called nonintegrable. The
extent of nonintegrability is expressed by “internal
curvature” tensor operator

¢k}. = akri. - a).rk - [rlc! I',']. (5)

The nonintegrability of the internal connection in
the large is expressed by the internal holonomy
group X, which is defined as the result of equivalence
displacement of internal vectors around closed loops
in event space.!® J is a Lie group = GL(n, ¢); for
analytic internal connections the Lie algebra of X is
spanned by ¢,, and its covariant derivatives of all
orders.!* Hence, the current density operator

I =gV, p* (6)

belongs to the Lie algebra of J¥; § = |Det gy,

where g, is the metric tensor in event space. The

identity .
VJ* =0 @)

can be proved easily. Equations (6) are the generalized
Yang-Mills equations.’® J¢ may be any finite-dimen-
sional Lie group; in the original work of Yang and
Mills,! ¥ < O(3). Throughout this paper, V, is

10 The event space is taken as simply connected.

11 This has been shown for “external” holonomy groups by A.
Nyenhuys, Koninkl. Ned. Akad. Wetenschap, Proc. Ser. A 56, 233
(1953); 57, 17 (1954).

11 The gauge fields are the coefficients of expansion of the ¢, in
terms of a basis of the Lie algebra of X or of a gauge group 8 2 X.
Sometimes the ¢,, themselves are called gauge fields; “internal
curvature” and “gauge fields” are then synonymous.
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covariant under event-space coordinate transforma-
tions as well as under gauge transformations; hence
Christoffel symbols may enter (6). Both (6) and (7)
hold for the Riemannian event space of general
relativity, although in this paper the event space is
taken as flat.

III. NON-ABELIAN GAUGE FIELD
FOR A POINT CHARGE

Let t, r, 6, ¢ be inertial spherical coordinates in
Minkowskian event space. Consider the internal
connection

T, =[f(6))r1A, T,=0, T,=0, T, =hk®)B,
®

where f and A are real functions of 6 only, and A and
B are constant matrices. With (5) one finds for the
internal curvature operator

¢tr = (ﬂrz)A’ ¢t0 = _(fI/r)A’
¢, = —(fAD[A,B]l, &, =0,
¢¢0 = —hIB’ d)rd = 0’
and the Yang-Mills current (6) becomes
J= (r)(f'A + f'Acoth
— (fh*[sin’6)[B, [A, B])),
10

®

J’ = 0, Ja = 0’
J? = —(r*sin? 0)'(h"B — h’Bcot 0
— f°h[A, [A, B]].

For a point charge at r = 0, J* must vanish for r # 0
and (10) becomes a system of nonlinear partial differ-
ential equations for the functions f(6) and A(6). On
physical grounds we require that the matrix elements of
the internal holonomy group elements belonging to
infinitesimal loops located at constant r are bounded
numbers times the area of the loop. This implies that
the functions

fof s fhfsin 6, and A'[sin & are bounded on
0<<m; (11)
we call a solution f(6), (6) satisfying (11) a regular
solution. The trivial solution f(6) =0, A(6) = 0 is
ignored.
For a point charge, Eqs. (10) imply
[B, [A, B]} = «A,
[[A, B], A] = £B,
where o and f are real numbers. Equations (12) and
(8) show that the internal holonomy group ¥ has a

Lie algebra spanned by the operators A, B, and [A, B].
It is convenient to change to the independent variable

(12)
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z = cos 0; for a point charge, Eqs. (10) become

2z ofh®
vt plrage L
h+ _,512_;,2 =0, (13b)
1—:z

where the dot denotes differentiation with respect to
z. In terms of the variable z, the regularity conditions
(11) read
£, f(1 — 2%, fh(1 — 2%}, and h are bounded on
—1<z< 1. (14)
The operators A and B can be normalized such that
|| and |S| become unity if they do not vanish. Then
there are the possibilities: Case I, « =0, |f| = 1;
Case II, |e| = 1, || = 1; Case III, |o| = 1, B = O;
and Case IV, « = 0, § =0,

Case I: « =0, |8] =1

The only regular solution of (13a) is f(z) = const.
For § = —1, (13b) has a regular nonvanishing solu-
tion only if f vanishes; this solution is & = h, + hyz,
with constant &, and 4, . For 8 = 1, (13b) has regular
solutions only if

f2P=m(@m + 1), m >0, an integer; (15)
these solutions are
h(z) = (1 — 2%)(d/d2)P,,(2), (16)

where P,,(z) is the Legendre polynomial of degree m.
According to (12) with « =0, =1, B and [A, B]
generate an Abelian invariant subgroup of J. It can
be shown from (12) that one has Tr B* = 0 for any
positive integer k, and it follows that B is nilpotent.
Hence, exp wB is a polynomial, so that X is non-
compact. According to (12) one has
A =L, + al; + asLs, an
B = b,L, + bsLs,
where L, , L,, and L are the generators of J¢, with the
commutation relations
[Ly1, Ly] = Ly,
[L2, Ls] = 0,
[Lss L1] = L,.
Since the Lie algebra is taken over the real numbers,
a,, ag, by, and by are real. If the internal space is a
two-dimensional complex linear vector space, there
always exists a choice of internal base for which

y+i 0 01
L=+ , Lp= s
0 Y 00

L=+

(18)

(19)
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where y is a complex number. The representation
(19) has an invariant subspace, but due to the non-
compactness it is not completely reducible. There are
no irreducible two-dimensional representatlons of
the Lie algebra of J.

Case IL: |o| =1, |B] =1

Inspection of the differential equation (13b) near
the singularities shows that for any nontrivial regular
solution A(z), one must have (1) = 0, A(41) 5 0.
On account of the relative sign of A and #, these
conditions can be met only if g is positive; hence,
p = 1, unless A(z) = 0. Using the information about
the behavior of the nontrivial regular solution A(z)
near the points z = +1, inspection of (13a) reveals
that for any nontrivial regular solution f(z), one
must have f(£1) # 0 and f(+1) = 0. These con-
ditions cannot be met if « is positive, since there must
be at least one point z, —1 < z < 1, with /' = 0, and
there f and f would have the same sign. Hence,
o = ~1 is the only remaining possibility. We have
not found any solutions for the resulting nonlinear
differential equations (13); however, one would
expect solutions to exist and to form a discrete set.
With « = —1, =1, ¥ =0(2,1) [i.e., the non-
compact modification of O(3)].

Case HI: |« =1, 8 =0

Then, h(z) = h, + h,z with constant A, and A,.
For both constants vanishirig, Case 1I, one finds
that 2 = 0. For the remaining cases, 4 cannot vanish
-at both singularities z = 41 of Eq. (13a). For the
singularity at which & # 0, the indicial equation has
imaginary roots for negative «. Since f(z) must be
real, one must have « = 1. At the singularity with
h # 0, the expansion of a nonzero f(z) has the
leading term fy(z & 1)}*@! with constant f;; the
sign must be chosen according to which singularity is
under discussion. If & vanishes at one of the singulari-
ties, one has, at that point, f # 0 and f = 0 for any
regular nonzero solution f(z). For « = 1, f and f have
the same sign at points where f = 0. This is in con-
tradiction with the behavior of f(z) near the singulari-
ties. Hence, there are no regular solutions for Case
I11, except the semitrivial ones with 4(z) = 0, f(z) =
const, and A(z) = Ay + hyz, f(z) = 0.

Case IV: a =0, =0

The only regular solutions of (13) are f = const,
h = h, + hyz, with constant h, and 4, .
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IV. CHARGES ASSOCIATED WITH
THE YANG-MILLS CURRENT

In the conventional procedure! the total charge
associated with the gauge fields amounts to the flux
i .
Q= [ 34" dj, 20)
2Jr
where R is the set of events happening at the same

time on a large spherical surface enclosing the physical
system, and

df;c). = %ﬁkluv df”v’ (21)

where df*” is a surface element on R, and 7,,, is the
totally antisymmetric tensor A-density'® of weight 1,
for which 403 = 1 in every allowable coordinate
system. For inertial spherical coordinates in a Min-
kowskian event space, and R chosen as the set of
events with r and ¢ constant, (20) becomes

Q=—i f &, sin 0 d6 do. (22)
This integral involves summation of internal operators
at different events on R, a process which is generally
not gauge-invariant. One could make it so by stipu-
lating that the internal operators ¢, r2sin 6 d6 do are
to be equivalence-displaced to a common collection
event x* on R, prior to integration. However, the
result of such a procedure depends on the choice of
collection point and displacement paths, unless
&,, commutes with that part of the internal holonomy
group J, belonging to loops on the event set R. This
difficulty has been discussed before in general terms,?
but now we have an explicit example. For the non-
Abelian solutions of the point-charge Yang-Mills
equations derived in Sec. III, one has

[$,,» ol # 0.

Hence, not all components of the charge (22) can be
defined unambiguously. Of course, even in this case,
one can formally evaluate expression (20) for a gauge
chosen such that

L 2,84 dfy = O,

(23)

249

where S is the set of events happening between times
t, and ¢, on the large spherical surface enclosing the
physical system; then one surely has conservation of
the charge (20), but this amounts to fixing the suc-
cession of gauges in time in such a manner that the
charge comes out the same at all times.

13 A A-density of weight w is a one-component quantity which,
under a coordinate transformation with Jacobian A, acquires the
factor A",
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An alternate method, which is gauge-invariant and
more likely to produce physically meaningful results,
has been proposed® which uses the concept of “meas-
uring operator”; instead of (20) we introduce definable
charges®

if .
a=1[ #Tr@PO A, 25)
2Jr
where Tr denotes the trace, and the internal operator
C is subject to the condition

dx*V,C =0 onR, (26)

for every dx* in R. Equation (26) states that the in-
ternal operator C is covariant uniform over R; it is
called a measuring operator on R. Its use in (25) is to
reduce the integration to that of scalars. Different
choices for C satisfying (26) may give different
components ¢ of the charge (hypercharge, isospin
projection, baryon number). Equation (26) implies
that C commutes with the part of J belonging to
loops on R. For the choice of hypersurface R and
coordinates as in (22), this amounts to the condition
that C commutes with ¢,,, Vyd,,, and V o, . We
separately consider the measuring operators and
total charges first for the non-Abelian solutions for
Cases I and IT, and thereafter for the Abelian solutions.

Case I

For a two-dimensional complex internal space, and
for the internal base which gives (19), any internal
operator C which commutes with ¢, is represented
by a linear combination of

c (01)C (10)
Voo P \o 1/

both of these matrices commute with Vy,, and
V, b, as well, and satisfy (26) on the instantaneous
spherical surface R. The definable charges are

g = —4nif Tr (ACy) =0,
gs = —4mif Tr (ACy) = +4w(2yi — )[m(m + D],
(28)

where m > 0 is an integer; use has been made of (17),
(19), and (15). Note that for v % —i/2, C, lies outside
the enveloping algebra of J€. Although X is three-
dimensional, there is only one generally nonvanishing
definable charge. For fixed y this charge is restricted
to discrete values; but since y can be any number, the
possible values for ¢, form a continuum.

For comparability® of charges at in and out states,
one must moreover have

VC=0 onsS.

27

(29)
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The integrability conditions for (29),

[¢0“ C] =0,
[¢¢t’ C] =0,

on S, are satisfied for the matrices (27). However,
(29) requires that

atc = [rt’ C],
= [m(m + 1)]*/"—1[141 + a,Ly + azLy, C] (31)

on S. For C, of (27) this condition is satisfied, but C,
of (27) must be given the factor exp it[m(m + 1)J¥/r.
Since C, gives a vanishing charge (28), this factor does
not show up in the results. We se¢ that the charge
g is comparable at in and out states, and since it is
associated with a nonderivative current, it is conserved
as well.®

Besides the charges (25), one must consider the
dual charges

(30)

a* = [ T 4. (32
2Jr

In the electromagnetic case, ¢* is the magnetic charge.

With (17) and (19), one finds ¢* = 0 for both meas-

uring operators (27).

At this point, a remark is due about the different
representations of the Lie algebra (18) of J. Taking
traces generally is a representation-dependent process,
and moreover, in higher dimensional representations
more measuring operators C may exist. Hence, the
number and values of definable charges may depend
on the representation. This is to be expected if one
realizes that different representations of the Lie
algebra (18) belong to physically different cases. The
dimension of internal space is physically important,
as is the dimension of event space, which must be
specified in addition to the abstract Lorentz group.
Inequivalent representations of the same dimension
stand for different physical situations as well: to loops
in event space correspond two different sets of internal
linear transformations which cannot be identified by
executing a base transformation. We have calculated
through the case of a three-dimensional complex
internal space. There are two inequivalent representa-
tions, B is nilpotent of index 2 in one, and of index
3 in the other. In the first case, there exist 3 inde-
pendent generally-nonvanishing definable charges;
but among these only one is comparable between in
and out states. For the second representation (B® = 0)
there is only one definable charge, which is also
comparable. The dual charge (32) vanishes regardless
of the representation because 4 vanishes at 6 =0
and 6 = =, on account of (16).



" GAUGE FIELD OF A POINT CHARGE

Case II

If non-Abelian solutions for this case exist, they
must belong to O(2, 1). However, for these solutions
there are no definable nonvanishing charges at all
for any finite-dimensional representation. This is due
to the fact that, for an internal operator C which
commutes with B, Tr (AC) must vanish: from (12) one
has

Tr (AC) = —Tr (B[A, B]C) + Tr ([A, BIBC),
= —Tr (B[A, BIC) + Tr ([A, BICB) = 0.
(33

The dual charges vanish because # = 0 at § = 0 and
0 = .
Semi-Trivial Abelian Solutions

For the first solution, # =0, f= const, ¢, =
SA/[r? is the only nonvanishing component of ¢,
and X is a one-parameter group. This solution is
essentially the same as that of Ikeda and Miyachi’
and a subsequent generalization® of their work.
Since ¢, , $g,;, and ¢, vanish, there is no algebraic
restriction on the measuring operator; there are as
many definable and comparable charges as the dimen-
sion of ¥ (i.e., one).

For the second solution one has f = 0, = hy + 1,z
with constant 4y and 4, ; the only nonvanishing internal
curvature tensor component is ¢, = Bsin 0.
Since ¢, = 0, there is only a dual charge; it is
definable and comparable, and it is restricted to
discrete values by an argument® similar to that of
Dirac for magnetic monopoles.’*

The third Abelian solution, f = const, # = hy + 5,2,
is a linear combination of the first two.

V. CHARGES ASSOCIATED WITH
HIGHER-ORDER CURRENTS
The current density (6) is not the only one which
can be constructed from the internal curvature and
which is covariant divergence-free. It has been shown
that any scalar density (or A-density) of unit weight

ﬁ(gk)., ¢‘4v’ vp¢;lv’ " .)a

which can be constructed from the metric tensor,
the internal curvature, and its covariant derivatives to
some order, can be used to find a covariant divergence-
free current density.5 If £ does not involve covariant
derivatives of ¢,,, the resulting current is called
nonderivative; it is then simply

14 P, A. M. Dirac, Phys. Rev. 74, 817 (1948).

(34)
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where

_ L
Oy,

For the nonderivative case, one has for £ the possi-

bilities

G =1 Trdidh, L= 12 Tr(dididh), etc, (36)

and those obtained by replacing a number of ¢,,’s in

these traces by their duals

¢;ck). = %gﬁkluv¢“v’ (37)
and further, those densities obtained from all the
foregoing ones by commutation of factors. The

Yang-Mills current (6) is derivable from £, of (36).
We briefly consider the charges associated with the

Pki.

(33%)

“higher-order currents” J%, etc., derived from the
scalar densities mentioned, for the internal curvature
fields obtained in Sec. III. Instead of the charge (25),
one gets, for inertial spherical coordinates and for
R the instantaneous events on the sphere,
g=i f Tr (P"C)r* sin 6 d6 do. (38)
Since for the internal curvature field with a pointlike
Yang-Mills charge, some of the higher-order charges
may be distributed, the limit r — oo of (38) has to be
taken in order to capture the whole charge. P must
be of order O(r—2) if this charge is nonvanishing.
Inspection shows that for Ez, Ea , etc., of (36), P is of
order O(r~%) with / > 2, and the same is true when
some of the ¢,;’s are replaced by their duals, or when
factors are commuted. Hence, for the solutions
obtained in Sec. III, the higher-order nonderivative
currents do not give rise to charges.
Of the derivative currents, we have only investi-
gated the current!® derivable from

Tt = gTr ((quJ” ;_)Vk‘bui.)

for Case I and a two-dimensional complex internal
space, and we found zero charges.

VI. CAN THE CONDITIONS ON
THE MEASURING OPERATOR BE RELAXED?
Conditions (26) and (29) for the operator C are
not the only ones that lead to conserved charges
associated with the Yang-Mills current, or with other
nonderivative currents (34). All one needs is an
internal operator field C on S such that

0= f Tr V,(P*IC) d1,; (39)
S

18 For derivative currents, the relation between J* and £ is
different from (34) and (35) (Ref. 5).
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then the charge

q= f Tr (P**C) df,, (40)
R

is conserved.

One should guard here against too much arbitrari-
ness in the field C over S; the resulting charge is only
useful if it can be evaluated unambiguously for
different physical cases. In view of the purpose of
introducing internal space in the first place, we want
to limit the number of possible different fields C over
S to no more than the number of elements of GL(#n, c).
This excludes fields C over .S which are not uniquely
determined by the operator C(x}) at one event x{ on
S. In other words, we demand that the field C over
S is restricted by partial-differential equations which
have a unique solution over S, when C is specified at
a single event x%. Moreover, we consider with sus-
picion prescriptions of continuation of C over §
[starting with a given C(x})], which do not always
lead to a unique continuation, i.e., for which unique-
ness depends on the physical situation at hand. This is
because defining the field C over S, together with the
use of C in the calculation of the charge, is considered
to correspond (classically) to physical measurement of
that kind of charge. The reason why we restrain our-
selves from dismissing the conditionally unique
continuation prescriptions altogether is the lepton
situation. No internal labels associated with the
strong interactions are assigned to leptons because
this would have to be arbitrary and useless; this may
be a case of conditional assignability.

With this in mind, let us consider conditions on C
such that (39) is true whenever on S the current
density (34) vanishes or vanishes asymptotically for
r— oo. The weakest condition which brings this
about is

Teuptt*v?w’ Tr (BIV,C) = 0, (41)

where #*, v*, and w” are vectors tangent to S. Since
this is essentially a single scalar equation for C, it can
never serve to continue C over S uniquely from a
given C(x}). Neither can

Tr (B*V,C) = 0, (42)

nor
ﬁkupvu"v"w"P["‘]V C=0, 43)

but
Py .C =0 49

may suffice if the rank of P4 is sufficiently large.
Whether or not this is the case depends on the
physical situation; for instance, for the non-Abelian
solution of Case I and a two-dimensional complex
internal space, (44) does not force unique continuation
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of C over S, from a given initial C(x%). Hence, the
choice (44) for the conditions defining the field C
over S falls in the category of conditionally unam-
biguous continuations of C. These conditions can
only be strengthened further by dropping the trans-
vection with PI¥41 in (44); one then arrives!® at the
condition (26) which always forces unique continua-
tion of C over S, from a chosen initial value C(x¥), at
an event xk on §.

VII. PULSATING INTERNAL CURVATURE
Solutions of the type (8) with g 0 describe a
nonsteady internal curvature. This becomes clear by
calculating the covariant time derivative of ¢,

2p 2p
Vi, =’;r; [A, (A, B]] = 1 rf

B, (45)

using (8), (9), and (12).
For the non-Abelian solution of Case I and a
two-dimensional complex internal space, (45) implies
Vb = F - [mm + Dby, (46)
which shows that ¢, is oscillating harmonically with
a frequency r—2[m(m + 1)]t. The same thing happens
to ¢, but ¢, and ¢, are steady. This oscillation is
not immediately noticeable in (8) or (9), because for
this form of the solutions, the internal bases are not
covariant-constant along world lines r, 6, ¢ constant;
one could say that the internal bases are oscillating.
This point may be clarified further by a gauge trans-
formation such that the new internal bases along
world lines r, 0, ¢ constant are equivalent. This is
achieved by an internal base transformation U which
makes I'; vanish:

0=T,=UTU-9\U). én
This implies with (8) that
o,U = ! AU; (48)
a solution is ' '
U = exp (frAs). (49)

In the new base, the internal curvature tensor operator
is expressed as

$is = [exp (—fr " ADdpalexp (fr*AN].  (50)

For the non-Abelian solution of Case I and with a
two-dimensional complex internal space, both ¢,,

16 Dropping in (44) the transvection with Ple2] gives V;C = 0;
but since only derivatives in the hypersurface S are needed, vA V,C =
0, v4 tangent to S, suffices.
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and ¢, are proportional to the matrix B; one has

[A,B] =iB, f= x[m(m+ D},
and

o e (4]
= B{exp [—fr (A + i)]} exp fr At
= Bexp (—ifr ). (51)
Hence,
$ip = b, (0) exp F irUmm + 1)] %
b = $ye(0) exp F irt[m(m + D,

where (0) denotes zero time. It is interesting to note
that, whereas the internal curvature is pulsating, the
concomitant observables are constant in time.” This
situation is very much like a stationary state in
quantum mechanics.

VIII. DISCUSSION

The main purpose for discussing these non-Abelian
solutions of the point-charge Yang—Muills equations is
to show that the integration ambiguities for the
conventionally defined total charges can really occur,
and that the number of unambiguously definable
charges can be less than the dimension and the rank
of the internal holonomy group, and therefore, less
than the dimension and the rank of the gauge group.
This result is derived for Yang-Mills-type gauge
theory, simply by being careful about integration of
nonscalar internal quantities. Investigation of weak-
ened conditions for the definition of measuring oper-
ators shows the only candidate to be condition (44);
but one can object against it on the grounds that it
leads to a conditionally nonambiguous definition of
charge. The writer presently does not consider this
objection quite strong enough for complete dismissal.
It can be expected that the reduction in the number of
definable and comparable charges by the internal
curvature will survive quantization.

The solution of the Yang-Mills equations used to
demonstrate these aspects of internal curvature is
probably not of direct physical interest; there are not
enough definable and comparable charges. The form
of the solution (8) is extremely simple in comparison
with more general solutions, and the internal holo-
nomy group is noncompact and, for the non-Abelian

(52)

17 This is true since these observables are independent of the
internal base and an internal base exists for which the Iy are not
dependent on time; in (8) one has such a base.
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solution of Case I, nonsemisimple as well. However,
the features of non-Abelian gauge fields shown here
may be expected to occur as well for other more general
solutions with different holonomy groups and more
charges; they are chiefly consequences of the non-
Abelian nature of J.

In the conventional Yang-Mills-type gauge theory,
the internal connection is restricted such that J€ is a
subgroup of the gauge group §, which is defined as
the internal symmetry group of the Lagrangian. Here
no action principle is used at all, and § does not
occur. If an action principle is introduced, but no
a priori particle fields, then the Lagrangian must be a
function of concomitants of the internal connection
and g, . But Lagrangian densities like'® g Tr (¢} %)
do not require introduction of an internal metric. § is
then just GL(n, c), a group which is already present as
a consequence of choosing the internal space as an
n-dimensional complex linear vector space. Hence, in
such a case, § need not be specified either. An internal
metric would be required if the Lagrangian were a
function of internal vectors, committed by the
internal connection, for instance, as internal eigen-
vectors of ¢, or didk.

The discreteness of the solutions considered here is
due to the nonlinearity of the Yang-Mills equations
for non-Abelian J€ and the regularity conditions (11),
together with the restriction of the Yang-Mills charge
to a point charge. A charge of finite extent still gives
discrete exterior solutions, as long as outside a certain
finite sphere the Yang-Mills current density vanishes.
The resulting “quantization” of the charge (28) is the
wrong one for an additive quantum number, and
moreover, continuity is reinstalled by the continuous
values which the constant ¢ can assume. However,
it is interesting to find that the classical Yang-Mills
equation for a point charge is capable of producing
a quantum-mechanical-like effect at all. The same
comment applies to the harmonic oscillation found
for certain components of the internal curvature,
whereas the observables are steady.
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The six-dimensional spherical harmonics are specified in connection with SO, and particular sub-
groups isomorphic to SO; and SO,; three-particle states arethen labeled by the grand-angular momentum
n, the usual angular momentum j, its projection on a fixed axis m, an integer u related to SO,, and a
degeneracy number w. Also, we derive the plane-wave and free Green’s function expansions in terms

of these spherical harmonics.

I. INTRODUCTION

OUR purpose here is to study a particular classifi-
cation of three-particle states. Many of the results
we derive are known—in particular, the spherical
coordinates and the related three-particle quantum
numbers. These coordinates and quantum numbers
have generally been introduced according to different
methods: group-theoretical considerations,!-2algebraic
calculations,* or both.® A special class of spherical
harmonics in six dimensions (those involved here) has
also been investigated before?; on the other hand, the
use of a symmetrical orthonormal basis of eigen-
functions has been made in scattering’ or bound-
state®® problems in some simple cases (S waves in
particular). However, these papers are actually
disconnected, in the sense that no connection has been
made between these coordinates and quantum numbers
and the usual functions of quantum mechanics (for
instance, the free Green’s function, which is a powerful
tool for scattering as well as for bound-state problems).
To our knowledge, only group-theoretical con-
siderations are able to furnish easily such a con-
nection; more precisely, only the introduction of the
spherical harmonics, labeled with the good physical
quantum numbers, i.e., the decomposition of the SO,
group with respect to the physical subgroups, in
particular SOy, may furnish us an expansion of the
free Green’s function in terms of these quantum
numbers. We must mention that such an “expansion”
has been investigated before” only in the case of S
waves.

In the present paper we shall use group-theoretical

1 A. 7. Dragt, J. Math. Phys. 6, 533 (1965).

2J. M. Lévy-Leblond and M. Lévy-Nahas, J. Math. Phys. 6,
1571 (1965).

3 W. Zickendraht, Ann. Phys. (N.Y.) 35, 18 (1965).

4 Yu. A. Simonov, Yadernaya Fiz. 3, 630 (1966) [English transl.:
Soviet J. Nucl. Phys. 3, 461 (1966)].

8 F. T. Smith, Phys. Rev. 120, 1058 (1960).

¢ M. A. B. Beg and H. Ruegg, J. Math. Phys. 6, 677 (1965).

7 V. Gallina, P. Nata, L. Bianchi, and G. Viano, Nuovo Cimento
24, 835 (1962).

8 A. M. Badalyan and Yu. A. Simonov, preprint (Moscow, 1965).

tools as much as possible. For the sake of complete-
ness, we introduce in Sec. II the spherical coordinates
for the three particles which are closely connected to
the invariance subgroups of the problem. A first
expansion of the plane wave and of the free Green’s
function is obtained in Sec. III; this expansion
exhibits only the ‘“‘grand-angular momentum” first
introduced by Smith.® The spherical harmonics are
introduced in Sec. IV as vectors of an irreducible
representation of SO in Sec. V and in the Appendices,
this representation is reduced with respect to the
invariance subgroups of Sec. II. Finally, we write the
full expansion of the free Green’s function in Sec. IV.

II. GEOMETRY AND INVARIANCES

As mentioned above, we first introduce the
spherical coordinates of a three-particle state, insisting
particularly on the symmetries and invariances of the
state. The three particles are supposed to be in their
center-of-mass system, so that the system possesses
six degrees of freedom; hence the associated spherical
harmonics will be invariant under the group SO. The
principal purpose of this section is then to look for
the subgroups of SO; under which the system of three
free particles is invariant.

To be clearer and more concise, we study only the
case of three particles of unit mass; the generalization
to the case of unequal masses is easy but tedious. Here
and there, we put between brackets some remarks on
the general case abbreviated as u.m. (read unequal
masses).

The center-of-mass restriction yields

3 3 3
2X,=3Y=327=0, 2.1)
i=1 =1 i=1

where (X;, Y;,Z,) are the Cartesian coordinates of
particle i in a given orthonormal coordinate system C;
let us call M, the position of particle i at a given time
t and 0 the center-of-gravity of the triangle M, M,M,.
In order to take Eq. (2.1) into account, we introduce
a fictitious three-dimensional space F of Q origin
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and three points in it, whose .Cartesian coordinates
are ‘
P:(X1, X3, Xy),

Q:(1h, Y, Yy),
R:(Zl’ ZZ’ Zs)-

[u.m.: for instance, P has coordinates (m,X;,
myX,, myX,).] Equation (2.1) implies that P, Q, R
move in a fixed plane § of F.

Let us notice that the positions of P, Q, R are
related to the reference system C. Had we taken an-
other system C’ instead of C, P, Q, R would have been
changed into P’, Q’, R/, still in ¥, according to

2.2)

QP QP
QQ' | =R, |Q], 2.3)
QR’ QR

where? R, is the 3 x 3 rotation matrix which trans-
forms € into C’, namely,

X, X,
Yz, = Rr Yi
Z, Z,

We now choose for C a fixed (in time) system of
axes (0X,0Y,0Z), and R, is the rotation which
transforms C into the usual reference system (0x, Oy,
0z) whose axes are the principal axes of inertia of the
triangle M,;M,M;, 0z being normal to its plane.
According to Eq. (2.2), to the axes (Ox, Oy, 0z)
correspond three points in F; let us call the first two
A and B, the third one being just Q. With this
particular choice, Eq. (2.3) reads now

QA QP
OB | =2, |20 2.3)
0 QR

In addition, we have A - QB =0. (um.: Q4 and QB
are two conjugate directions of an ellipse.) Notice
also that 242 and B2 are the two principal momenta
of inertia of the three-particle system.

In the following, what we call the spherical co-
ordinates of a three-particle configuration are defined
b

y(i) the three Euler angles of R, (external coordi-
nates),

(ii) polar coordinates of 4 and B in § with respect
to an axis Q¢ (internal coordinates).

® The index r refers to the position of the particles; see index k
below.
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More precisely, we set

QA4 =rcosy,
QB =rsiny,
x = polar atgle of 4 = (&, QA).

The ranges of x and y are easily seen to be [0, 7]
and [0, }«], respectively. Indeed, a change of x into
x + m or y into y + }» induces a new definition of
the axis (0Ox, Oy, 0z) (symmetry with respect to O in
the first case, exchange of Ox and Oyin the second case).
Notice that r2 = r} + r; + rj where r, = OM;.

We may formally write, identifying a two-vector in
& with the 2 x 1 column matrix of its components
with respect to two perpendicular axes Q& and Q7,

rcosy
QA = R,(x) o , (2.4a)
0
QB = R,(x)( . ), (2.4b)
rsiny
where Ry(x) is the usual 2 x 2 rotation matrix
cosx —sinx
Ry(x) = . . 2.5)
sinx cosx

The third null vector of the left-hand side of Eq. (2.3)
may be written as
0
0= R,(x)| |
2 (0)

In conclusion, the six coordinates needed to fix a
three-particle configuration will be r and five angles
(three from R, , x and y) or six Cartesian coordinates,
which are chosen as (&p, &g, érs P, Mg, R) 1N
this order, where, for instance, (£{p, 7p) are the
Cartesian coordinates of P in § with respect to
(Q&, Q). Such a six-vector, or the column matrix of
its six Cartesian coordinates, is denoted R. From
Eq. (2.3') and (2.4) we have

(2.4¢c)

R =[R;" + R7URy(x) ® L]R,, (2:6)

where each bracket is a 6 x 6 matrix, + means the
direct sum of matrices, ® the tensorial product, I is
the unit 3 X 3 matrix, and R, has the components
(rcosy, 0, 0, 0, rsin y, 0). The six lengths of R and
R, are both r. A caret denotes a unit six-vector:
R = rR. Notice also that the 6 x 6 matrices R+
R;'] and [Ry(x) ® I,] are two commutative matrices
of SO,.

Let us notice that the condition Y r, = 0 is so far
irrelevant. We may as well set > r, = R; the plane §
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will not be fixed in time, but the coordinates are
unchanged.

In the same way, we may define spherical co-
ordinates for the set of the three momenta of the
particles (k;, ky, K3). The associated six-vector is
denoted by K, its six-length by k, the three-dimensional
rotation by R,; £ and % correspond to the preceding x
and y. We write similarly,

K= [R" + R 1[Ro(&) ® L]K,, (2.7

where K, has the components (k cos #, 0,0, 0, k sin 7,
0). This parametrization of the momenta does not
depend upon the value of the masses. Notice that k2
is the total energy of the three free particles.

As mentioned in the Introduction, these coordinates
are not new. In momentum space, our set is the same
as in Refs. 1 and 2, except &, which stands for their
3¢; the same holds for the position coordinates of
Ref. 1. In Ref. 3, the position coordinates are “‘y,”
“a,” “f,” R with

“y” — (&)ér, Cu?? %77_ . 2y, “5” = Jx.

Let us now study the invariances of the problem.
We have, of course, the rotational invariance,
apparent in (2.6) in the factor [R;* + R;], which is
related below to the subgroup of SO, isomorphic to
SO, , the matrices of which are

R, 0
0 R,/

On the other hand, the axis Q¢ in § is arbitrary, so
that x is defined up to a constant. This invariance is
related to the permutation group of the three
particles’>* and corresponds to a subgroup of SOs,
isomorphic to SO,; its matrices read

Ry(x) ® 1.

Let us recall that these two subgroups of SOg are two
commutative subgroups.

III. FREE HAMILTONIAN—GRAND-
ANGULAR MOMENTUM

We do not write explicitly the free Hamiltonian in
function of the spherical variables because its exact
structure is of no interest for what follows; it can be
found elsewhere.>® We just notice that it may be
split into two parts, namely,

Hy= — 6=___2_£r5£__i

3ror or 3

where &5 does not act on r; Ag is the six-dimensional
Laplacian. The eigenfunctions of d;, often called the
square of the grand-angular momentum,® have been

8, (3.1)
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extensively studied in the literature; all we need by now
is that its eigenvalues be —n(n + 4) with » integer
= 0.

The eigenvalue problem

Hy = Ey = k%

may be solved in two ways. First, we consider H, as
the sum of three Laplacians in three dimensions; thus
we get the plane wave

ikl . l'l + ik2 . 1'2 + ik3 . 1'3 ’ (3.2)

with k; + ks +k;=0 or r,+r,+r,=0. The
scalar product of the exponent is nothing but the six-
dimensional Euclidian scalar product of the above
vectors K and R, which in matrix language reads!®
KR ; we can also write it as

KRR = K © R = kr cosg 0. (3.3)

The second type of solutions is found with the help
of Eq. (3.1). They are given by the product of an
eigenfunction of d5 with a solution of the remaining
part of H,. Namely, y can be written as a super-
position of y,, of the form

y, =r2J, (kr)F, 3.9
with

0sF, = —n(n + 4)F,,.

The relation between the plane wave and this last
class of solutions is given by the Neumann series'!

exp (iK © R) = 43 (n + 2)i"J ., o(kr)(kr)~2C3(K © R),
" (3.5)

where C2(t) is the Gegenbauer polynomial of degree
n. The above expansion is a generalization of the well-
known expansion in Legendre polynomials.

Equation (3.5) is the first step in expanding the
plane wave. The free Green’s function may also be
written as an expansion in Gegenbauer polynomials.
Indeed, we have, in Dirac notation,

(RI Go(s) IR") = G(R, R, 5) = f R [ K

(K|R?,
(3.6)

oK
k2 — s

where, as usual, we have set
(R|K) = (2m)~2exp (K OR).

dgK is the six-dimensional phase space, which can be
evaluated in functions of the symmetrical variables
introduced above. We have

deK = k5 dic dQ(K),

10 K¢ means the transposed matrix of K.

i1 Higher Transcendental Functions, A. Erdeleyi, Ed. (McGraw-
Hill Book Company, Inc., New York, 1953), Vol. 1I, Formula
7.10.5.
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where dQ(K) = dR,dfsin 4y dn is the element of
the unit sphere in six dimensions.

Now, each plane wave in Eq. (3.6) admits an
expansion in Gegenbauer polynomials of the type
(3.5). According to the orthogonality relation'? on the

unit sphere Q(K),

f _C¥R o K)CE(K 0 R dQ(K)
Q(K)

27°

=8,m CXRoR), (37
.y ( ), (3.7)

we find

G(R,R,5) =3 (n + 2)G,(r, 1, S)C:(R o) R’), (3.8)
with "

Gn(r’ r,, S) % gn+*}(r5 7' S) (39)

1
S’()

8lr, ) = 2 1y sHERsY) (310)

2( )
being the well-known two-particle free Green’s
function.® Notice, however, that g,(r,r’,s) is here
involved for unphysical values of the two-particle
angular momentum.

IV. SPHERICAL HARMONICS

To be complete, our plane-wave expansion must
exhibit the dependence upon the five angles of K
and of R involved in the Gegenbauer polynomial of
Eq. (3.5). Indeed, this polynomial is well known, and
K oR is easy to compute; but this does not give
directly the angular momentum dependence, for
example, which is of great importance. To exhibit the
angular momentum and other needed quantum
numbers, we use the following expansion of the
Gegenbauer polynomials in a function of a complete

orthonormal set of spherical harmonics S? (ﬁ)lzz

CciK o R) =

P (K)S (R) 4.1

where h(n) = & + 1)(n + 2)2(n + 3) is the total
number of independent spherical harmonics of degree
n. The spherical harmonics satisfy

8:SL(R) = —n(n + HSL(R).

Let A4 be a proper orthogonal transformation in our

12 See Ref. 11, Vol. I1, Chap. XI.

13 To perform the k5 dk integration indicated in Eq. (3.6) so as
to obtain Eqs (3.9) and (3.10), see, for example, A. Sommerfeld,
Partial Differential Equations in Physics (Academic Press Inc., New
York, 1949), Sec. 28.
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six-dimensional space, i.e., 4 € SOq; then

SL(AR) = z g (ASLR),

where the matrix g{"(4) belongs to the irreducible
representation of SO, of degree h(n). Also

4.2)

Z S’*(K)s R),

i=

hin) n .
,_21 S (AK)SL(AR) = (4.3)

which is nothing but the invariance of the scalar
product K © R under the transformation A.

Now, what we are looking for is the form of S;(ﬁ)
in a function of the spherical variables R,, x, and y,
or equivalently, in a function of the good quantum
numbers of the free three-particle states, i.e., angular
momentum related to the invariance under SO, and
“u” related to SO,. The decomposition (2.6) of R is
of great interest for this task because it immediately
exhibits the two transformations we need, namely,
R, and Ry(x), which belong to SO; and SO,,
respectively.

The principal problem is then to decompose the
representation g of SO, with respect to the irre-
ducible representation of SO; and SO,. We do it in
Sec. V. Here we are going to exploit the rotational
invariance of the six-dimensional scalar product
KoR [cf. Eq. (4.3)]. As mentioned above, KoR is
just the matrix product KR = RK. From Eq. (2.6)
and (2.7), and from the commutativity of the two
subgroups SO; and SO, of SO, we have

K o ﬁ = lA(;ARO’
where 4 is, now and in what follows, given by
=R + R)[R(x — H @ L),

= [Ry(x — ) @ LI(R + R), (4.4)

with
R = RR. 4.5)
Hence K OR = Ko o} (Aﬁo), so that Eq. (4.1) may
as well be written as

2,",3 hin)

Zﬂmwwm,

CXK o R) =
2’”3 1% (n) v
= n + 2”218" (n)gll’ (A)sn(y)’ (46)

where we have set

SR = 8,(») @7
to exhibit the fact that Ry depends only on y. Similarly,

SL(Ky) = 8i(x).
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So far, the functions S;(f\) are greatly undeter-
mined—they just form a “complete orthonormal set of
spherical harmonics.” There are, of course, several
such sets, obtained from one of them by suitable linear
combinations. In the following, we choose the S! (R)
as eigenfunctions of J2, J,, and —id/dx, with eigen-
values j(j+ 1), m, and g, which is possible because
each of these operators commutes with the two others
and with J;. Hence, / may be replaced by a set of
four integers (j, m, u, w); the last one refers to the
remaining degeneracy,'* if any.

V. REDUCTION OF g"{(4)

g™ (4) belongs to the irreducible representation of
S04 of degree h(n), the highest weight of which is
(n, 0, 0). If 4 is conjugate to

Ry(my) + Ry(7y) + Ry(7s), (.1
we haveld
cos(n +2)r;, cosmy 1
cos(n 4+ 2)r, cos7y 1
cos(n + 2)ry cosvy 1
Tr g(4) = (n+ 2 (5.2)
cos 27y cost; 1
cos 27y costy 1
cos 273 cosry 1

On the other hand, 4 belongs to a particular subgroup
G of SOg; thus g'"(4) must reduce with respect to the
irreducible representations h{"(4) of this subgroup G,
according to

£"(4) =

@ Y*hM(4), (5.3
i

where

7= [ Tremr TehP e (659
G

dg being the normalized elementary volume of the

subgroup G.

The particular choice of S%(R) we have made at the
end of Sec. IV and the form of 4 induce remarkable
properties of g™ (A4). It is the (commutative) product
of two matrices, one being exactly the direct sum of
irreducible representations D/ of §0,, the other a
diagonal matrix whose elements are the one-dimen-
sional representations e*@%) of SO,. Furthermore,
the commutativity of the two associated subgroups of
SO, enables us to write
(5.5)

) 7 max
R+ R) = B oD

14 For simplicity, @ is here an integer which runs from 1 to 'y"“
(see Sec. V). Thus our @ is not the same as the w of Ref. 1.

15 See, for example, H. Boerner, Representanon of Groups (North-
Holland Publishing Company, Amsterdam, 1963).
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and
jmax ¢=¢

g"Ry(x — H ® Ij] = @ @ [e'" 0@ ),
=0 =1
(5.6)

where I, is the (2j + 1) x (2 + 1) unit matrix, the
second formula being a consequence of Schur’s
lemma. More explicitly, for a given value of j, we have
at most «!® different values of u. The allowed values
of j and u for a given n and the corresponding
degeneracies «{™ and S{" may be calculated with the
help of Eq. (5.4) and (5.2); we must, however, notice
that the first subgroup ischaracterized by ; = 7, = ¢,
73 = 0 and the second by , = 7, = 73 = x. We also
need the values of dg and the traces of the irreducible
representations of the preceding subgroups. In the
first case, dg is proportional to sin®*(}¢)de and
Tr D/(R) = sin (j + $)¢/(sin ¢/2). In the second
case, dg is proportional to dx, and the trace is the
matrix itself e**#, In Appendix A, we give a resumé of
these calculations. It is interesting to notice the
following properties of these numbers:

«™ =0 if nodd,
a™=0 if j>n,
«® =0 if [Hn+ D=}

except!® when 7 and j are both even, in which case
aM=n4+1=j+1;

{n) __ pin)
[ e L

(") ¢ 0 only if 4 and n have the same parity,
W =0 if [u| > n

However, the most interesting problem at this point
is not the numbers «{* and ™, but the degeneracy
when j and p are given, i.e., when we are dealing with
the whole matrix 4. We have

g‘"’(A) E y‘"’[D’(ﬂ) . ez‘u(a:——g)}
EN
and the y’s may be evaluated from Eq. (5.4). The
calculations are somewhat tedious and are indicated
in Appendix B. Let us give here some properties of
these numbers:

9\ #% 0 only if u and n have the same parity,

PR =0 if n<j or n<lul,

(n) __ (0}
Vi Vi—u>

vim <+ 1
i < 3G + D]

if n even,
if n odd.

8 [x] means the greater integer less than x.
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{a) (b}

Fic. 1. Numbers yin {m) for a given value of j, in a function of [$n] =
and Bul=4. @) » and It even. y,",} =31+ 1.
7§ = [}j]. ----> yi" decreases by one unit'at each point of the
lamce, in the sense given by the arrow, from its maximum value to 0.
~H—H+y‘"’ = const. (b) # and u odd. 7}‘"’ 3G+ 1l
the same signification as in case (a).

The last two conditions have an interesting con-
sequence: If j is equal to 0 or 1, y{") is never greater
than 1,i.e., n and p are sufficient to determine a three-
particle S or P state. We give the exact value of
yi™ in Fig. 1.

VI. PLANE-WAVE AND GREEN’S
FUNCTION EXPANSION

According to Eqgs. (5.5) and (5.6), we may write
g (A) = Dl (R)H =2,
where I = (j,m, u, w), I = (j, m', u, w),
g (4) =
Hence Eq. (4.6) reads now
Ci(K o R)
_ 2

= n 42 jmgmwSimuw*(n)ﬂ)fnm,(g{)ew(x—&)Sim'uw(y),

where > .., stands for 3> % > 3 in that
order and is to be taken over all possible values of the

indices; for 1nstance, m goes from —j to +j and o
from 1 to y{"); to be precise, we might have given
indices to u and w, but this would have made the
formulas too heavy. We keep this convention below,
i.e., the summations are to be taken in the specified
order and only over the possible values of the indices,
once the preceding indices are fixed.

We are now able to complete the expansions (3.5)
and (3.8) of the plane wave and of the free Green’s
function. We get

37,.3(Rt K) = ¢iKOR,
=2 Do (Rkﬂ’u‘l)z i"T oo kr)(kr)

imm’

% 2 ez,u(x—§) z S;muw*(n)sl;;am pm(y),
u @

0 otherwise.

(6.1)
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RIG) IR) = 3 Dhpp(RKH)
x X )"ZH:.‘:’.a[us*]Jnﬁ[r.:s*] 3 el

n b
X 3 Simer(y)Sm ).

Our task will now be achieved after we have evaluated
the functions S!(y). What we know about them are
the following properties:

8.(y) = (6.3)

S;(f"\) is a homogeneous polynomial of degree » in
the (six) components of R:

6.2)

Si(cos 3,0, 0,0, sin y, 0).

SIMeR) = 3 €D (RS, (64)
8:SLR) = —n(n + HSLR), (6.5
PSYR) = j(j + DSYR), (6.6)
JzSLR) = mSL(R), 6.7
—i(9/0x)SL(R) = uSL(R). (6.8)

! stands for the set (j, m, 4, w). Furthermore, the
S},(IS\) must satisfy the orthogonality relation

[ oSSR Q) = 8yt (69

In order to take Egs. (6.6) to (6.8) into account, it
is necessary to know Jin a function of the operators
J?, Jz, —i0/ox. This problem has been solved for
partlcular values of j (j j=0,1,2" 8 j=0, L2 j=0%.
For j = 0, the result is that 8!(y) is a Jacob1 poly-
nomial.

Let us conclude by some remarks. Equations (6.1)
and (6.2) have been written in such a way that the
angular momentum dependence of the plane wave
and of Green’s function appears immediately. In
order to get the projection of one of these functions
on a wave of definite angular momentum, it is now
sufficient to take the coefficient of the D’ function in
the expansions (6.1) and (6.2). For j = 0 the result is
already known,” but it seems to be new for greater
values of j.

ViI. CONCLUSION

Equations (6.1) and (6.2) may now be the starting
point of the analysis of the wavefunction of three
spinless particles, interacting via some potential. They
allow us to immediately transform the Schrédinger
equation into an integral equation of the Lippmann-
Schwinger type, and thus to study the analytic
properties of the wavefunction. This is our present
purpose and will be the subject of future publications.



1884

ACKNOWLEDGMENTS

I should like to thank Dr. K. Chadan and my
husband, R. Pasquier, for much encouragement.

APPENDIX A. DEGENERACIES «{* AND f{*
L af®

A rotation R of SO; may be characterized by a
single angle @. The character of the representation of
degree 2j + 1 is

Te D) = 1 (p) = SLULEDT,

in @2
and the elementary volume is proportional to
sin? (¢/2) dp. On the other hand, according to Eq.

(4.2) and the fact that our subgroup SO; of SO, is
characterized by v, = 7, = ¢ and 73 = 0, we have

(A1)

cos(n+2)¢’ cos¢g’ 1
1R+ R) = 2.(¢) =1lim |cos(n+2)p cosg 1
o 1 11
cos2¢’ cos g 1|\
X | |cos2¢p cosp 1 (A2)
1 1 1

For the sake of simplicity, we express everything in
functions of Tchebichef polynomials'” of cos ¢/2 = @:

T,(®@) = cos (ngp/2),
UL(®) = [sin ( + De/2]/(sin ¢/2).
Equations (A1) and (A2) may be expressed as

11(9) = Uy (D),

i il _ T2n+4(q))

80 d® 2(1 — @) ’
1 n+l U' (I)

= SCD "éo 2m( )

Furthermore, the orthogonality relation between
the characters of SO; yields

(A3)
1(p) =

(A4)

27
[ 0@ sin? (p12) dp = 70,5, (A3
and the numbers «{™ are given by
" 1 2x .
=2 [“r(onpsint gD dp. (40
Now, our problem is just reduced to express

U, (®)/® as a linear combination of U,(®); this
expansion is summed up in the following formulas,

17 See Ref. 11, Vol. II, Sec. X, 11.
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the derivation of which is straightforward:

Us DD) = 421pU2H(<I>)/<I>,
p=
Upp o(D)D = 221(—)”"‘%,_2 .
From these expressions and Eq. (A5), we get

i n+l
) = (=) 3 (~Fpn—p+2). (A7)
p=3j+1
In particular,

0
=1,
=0, a =2,
w =2 a’=1 o’=3,
=0 =4, =2 o« =4

These results are in agreement with those of Ref. 1.
Equation (A7) may be simplified, according to the
parity of j and n. We have

n<j: a™ =0,
j=2r, oW =gq+r+14+2r(g—r),
j=2r41, e’ =Q2r+1)g -,
n=2q+1, j=2r, oM =2rg+1-7r),
j=2r+1, M =20r+1)qg+1-7).
IL (™

A rotation of SO, depends on one angle x. All the
representations are of degree 1 and the characters are
e, u integer; dg is proportional to dx.

Now, the subgroup SO, of SO, we need is char-
acterized by 7; = 7, = 73 = X, and the traces of the

corresponding representations are got from Eq. (5.2)
by a limiting procedure. Let us write them as

2a[Re(x) ® I3] = x,(x), (A8)
= lim g,[Ry(m1) + Ro(7e) + Ro(7y))

TI1=T2=T3=q

We again use here Tchebichef polynomials of
X = cos x. Hence we may write

n=2q,

n+4+2

xn(X) = 2T} o(X) = Unn(X).  (A9)

The degeneracies B{™ are proportional to the integral

2r 27
f 1 dx = f e dx,

0 0
27
=f 2(x) cos ux dx.
0

Hence #{ = g and we may suppose z > 0 in the
following. On the other hand, we may replace the
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trace e by cos ux = T,(X). The orthogonality
relation between the traces now reads

27
J:)

where ¢, = 2, €,

27
" = 1 f €,2n(%) cOs ux dx.
27 Jo

T(X)T(X) dx = 7€ndn, (A10)
= 1 if m > 0. Finally, we have

(A11)

Thus the problem is reduced to the expansion of
U, ,1(X)in functions of T,(X). This expansion follows
from formula (40) of Ref. 17. We just give the result:

n<u, f,")=0,
n=2, p=24 B =(q+1)
x(@+1—=MN(@q+1+4),
lu=21+1, ‘(‘")=0,
n=2q+1, u=221, ) = 0,
p=2a4+1 B"=02q+3)

X(@+A+2q+1-22
APPENDIX B. DEGENERACY y{")

We use the same notation as in Appendix A. We
are here concerned with a transformation A which
belongs to a subgroup G of SOg, isomorphic to the
direct product of SO; and SO, . The characters of G

are just
2APHu(x) = Uz (D).

According to the symmetry u — — g, this expression
may be replaced in what follows by U, JADT,(X). The
elementary volume of the group G is proportional to
sin? (@/2) do dx.

Considered as an element of SOq, A is conjugate to
Ry(x + @) + Ro(x — @) + Ry(x), s0 that

1a(X, @) = Tr g™ (4),
cos(n+2)(x+ ¢) cos(x+ ¢) 1

=|cos(n+ 2)(x — ¢) cos(x—¢) 1

cos (n + 2)x
cos2(x + ¢) cos(x + @)

cos X 1
1 I\
X cos2(x — ¢) cos(x —¢) 1

cos 2x COS X 1
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After some straightforward calculations, this expres-
sion reduces to

xn(X, D) = Up1 (DA, 5(X, ©)/4D(D2 — X?),
where
An+2(X’ q)) =XU, +1(X) +2((D) o Un+l(q))Tn+2(X),
= n+2(X) +2((D) n+2((D) +2(X)

By induction, we get

: dn
An+2(X ’ (1)) = 2((1)2 - X 2) ’ZOUM—Zk(X)Un—Zk((D)'

The degeneracy y{") is given by

- (n)

) = f dx f sin® (¢/2) dgza(X, )

X U,y (@)e, T (X).
According to Eq. (A5) and (A10), »{") is just the
coefficient of U,;(P)e,T,(X) in the expansion of

1 (X, @). It is finally possible to write this expansion
as follows:

J=| [%n] m=J
X'n(X’ cD) z U2J z Tp—2m
_ym _\ntd
x{[m+1:|+1+( ™ 1+ ( )+}
2 2 2
J=[inl-1  m=En]
+ z U2J 2 Tp—2m
J=0 m=J+1
x{[J+1]+( R ) 1+(—)}
2 2 2
m=n—J
+ Z U2J z T p—2m
J=[$n}+1

9 {[m ; 1] 41 +2(—)’"1 + (—)””}

2
n—J
T +1,
m=n—J+1 2m{{ 2 :|
where 7, stands for ¢,T,, the arguments of U,; and
7, being ® and X, respectively. The corresponding

degeneracies are exactly the expressions between
braces, and are represented in Fig. 1.

m=[$n]

J=n
+ 2

J=[$n}+1

Uss
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The quadratic Lagrangian eigenvalue problem [w®] — wid — H]& = 0 for H and id, completely
continuous Hermitian operators in a Hilbert space E, H > 0, is investigated. The problem is reduced
to an equivalent linear eigenvalue problem for a single completely continuous Hermitian operator in
the Hilbert space E x E, and existence and convergence theorems for the eigenvectors and variational
properties of the eigenvalues for the original quadratic problem are easily obtained from standard
theorems. The general solution of the associated time-dependent problem & + 4£ + HE = 0 is obtained
under the further restriction that E be finite dimensional. Necessary and sufficient conditions for

stability are given.

I. INTRODUCTION

HIS paper continues the discussion presented
earlier* of the eigenvalue problem

H, ¢ = [0 — wid — H]E =0
and the associated time-dependent problem
ii + A7 + Hn(t) = 0, 1€ (0, ), )

with the boundary conditions #(0+) = %, 5(0+) =
x. The operators H and i4 are linear Hermitian
operators on and into an inner product space E,
x€E,x€E, n(t)e E for 0 <t < oo; and the eigen-
vector £ of Eq. (1) corresponding to the eigenvalue w
(a real or complex number) is a nonzero element of
E. Equation (1) is obtained from Eq. (2) by consider-
ing solutions of the form 7(f) = e**tZ,

We confine our attention in this paper primarily to
the case where H and i4 are completely continuous,
H > 0, and E is a Hilbert space. Under these circum-
stances, the eigenvalue problem of Eq. (1) can be
reduced to an equivalent linear eigenvalue problem
for a single completely continuous Hermitian operator
on the Hilbert space E* = E X E, and existence and
convergence theorems for the eigenvectors of Eq. (1)
and variational properties of the eigenvalues follow
immediately from standard theorems. Section II of
this paper is devoted to a discussion of the equivalent
problem and some of its consequences.

Section III contains a uniqueness theorem for the
solutions of Eq. (2), and the general solution of Eq.
(2) is obtained under the additional restriction that
E be finite dimensional. This generalizes a result
obtained earlier* for the case H > 0. We find that
the general solution of Eq. (2) for H > 0 is given by
a sum of eigenvectors of Eq. (1) plus a solution of the
form tn + 8, where Hn = 0. Necessary and sufficient

M

* The work presented here was supported by the U.S. Atomic
Energy Commission under Contract AT(30-1)1480.
1 E. M. Barston, J. Math, Phys. 8, 523 (1967).

conditions on 4 and H are given for stability (y = 0).

The results presented here and in Ref. 1 have numer-
ous applications to problems of small oscillations
about states of steady motion in fluid mechanics and
plasma physics. In general, these problems involve
differential (unbounded) operators. The question of
converting these differential equations to Hilbert-
space problems of the form of Eq. (1) involving
completely continuous operators will be discussed in
Part III of this series, along with applications to
specific problems.

II. EIGENVALUES, EIGENVECTORS, AND
THE EQUIVALENT PROBLEM

We begin with the introduction of some notation.
The range and null space of an operator T is denoted
by Ry and Ny, respectively, and S represents the
closure of the set S. Let E be an inner product space
with inner product ( , ). The product space E?=
E x E is the inner product space consisting of all

-2-vectors 7 of the form 5 = (Zl) ,where 9, € E, k =
2

1,2, with inner product ( , ), defined by (%, {), =
(m» {) -+ (n2, §o). If E is a Hilbert space, so is E®
Finally, we note that the adjoint of a linear operator
W on E2, represented by the 2 X 2 matrix (W,;)
i,j=1,2, where the W, are bounded linear oper-
ators on E, is given by (W}), the asterisk denoting the
adjoint.

Theorem I: Let HY be a linear operator defined on
and into E with the property (H)? = H. Suppose

that
n= (’71) c E?
Yp)
is an eigenvector of

0 —int
W= 3
iHY g

1886
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with eigenvalue o, i.e., o = Wy, # 0. If w 3 0,
it is both necessary and sufficient that

m= —l.w_lH*E,
ne=2¢& H,U=0, £#0.

If o = 0, then Hzyy, = 0 and 7y = 0 implies #, # 0,
Hn, = 0; conversely, HE =0 and £ 7# 0 implies

(€)

that = (g) is an eigenvector of W with eigenvalue 0,
if H} is Hermitian.
Proof: Wn = wn holds if and only if

wny = —iHn,, @

Wy = iH}"h + idn,. )
Multiplying Eq. (5) by @ and substituting Eq. (4) into
the result yields H,n, = 0. Equation (4), w # 0, and
7 # 0 imply that #, ¢ 0. Thus Egs. (4) and (5) hold
for w # 0,  # 0 only if Egs. (3) hold. Conversely,
w # 0 and Eqs. (3) imply Eq. (4), and Eq. (5) follows
from w'H,n, =0 and Eq. (4). Suppose w = 0.
Then Eq. (5), n # 0, and 7, = 0 imply #; # 0 and
Hny =0. HE =0, £ # 0, and H? Hermitian imply
H¥¢ =0, since (HY¢, HYE) = (&, HE) =0, so that

of) o

Theorem II: Let H and i4 be completely contin-
uous Hermitian operators on the Hilbert space
E(dim E < «), H > 0, |4|| + |H| > 0. Then there
exists a unique positive completely continuous linear
Hermitian operator H* with domain E and range in
E with the property (H})?= H, and a nonempty
sequence [finite or infinite, with at most 2(dim E)
elements] of eigenvectors {&} (k=1,2,3,--) of
Eq. (1) with real nonzero eigenvalues w, having the
following properties:

AH,E=0,k=12,3,"-". ©)
(B) {|wgl} is 2 monotone nonincreasing sequence,
and lim w, = 0 if the sequence {&,} is infinite.

ko
(C) dim F(w) < o0, where F(w) is the linear mani-
fold of eigenvectors £, with eigenvalue w, = w.
(D) woi(&xs €) + (s HE) = w8y,
k,1=1,2,3,--:
(E) Let x € E, x € S(x), where
S(x) = {% | * = iHg + iAx, g € E}.

M

Then

< logal Hlgl? + I1x12E, (8)

H ’}{x — i akfk:l
k=1

< logal Tgl? + I1x1%E, (9)

n
X — D ok
k=1
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where
= 0x(x> X) + (&, Hx)
"~ oih, &) + (&, HE)'
j) For xeE, x€e 3_(;) [note that H > 0 implies
S(x) = E], we have

H¥x = Y aHYE,,

k

(10

k

(11
(12)

%= k.
k

(G) Let x € E, )'ceg(—x_), and 8, (k=1,2,*+,n)
be any »n complex numbers. Then

n 2 n 2
x — zﬁkwkfk + ix — 25k§k
k=1 k=1 H
n 2 n 2
=[x — zakwksk + ||x — Z“k‘flc
k=1 k=1 H
n 2 n 2
+ Z(“k — Bwdyl + 2(% — Bé:
k=1 k=1 H
n 2 n 2
> (x —Zakwksk + > -zakfk s
k=1 x=1 H
= (%, ) + (x, Hx) — > |o|* 0}, (13)
k=1

where the o, are given by Eq. (10) and ||y, = (y, Hy).
(H) For x € E, x € S(x), we have

(%, %) + (x, Hx) = % logel® v (14)

Proof: Since H is a positive linear Hermitian oper-
ator on E, there exists a unique positive Hermitian
linear operator H* with domain E and range in E
such that (H%)? = H.? The complete continuity of
H# follows from (H?)® = H and the fact that H is
completely continuous. The linear operator W defined
in Theorem I on the Hilbert space E X E is therefore
completely continuous (each of its elements are com-
pletely continuous operators) and Hermitian, and
I41l + | H| > 0 implies |W|l > 0. Therefore there
exists a nonempty sequence [finite or infinite, con-
taining at most dim (£ x E) = 2(dim E) elements]
of orthonormal elements {#,} in E x E (k=1,2,
3, - - -} with the following properties®:

(@ Wie = oxies (s M)y = Ours
k=1,2,3,---.

(b) The w,’s are real and nonzero, {|{w,|} is a mono-
tone nonincreasing sequence, andklim = 0 if the
— 00

(1)

sequence {7;} is infinite.

? F. Riesz and B. Sz.-Nagy, Functional Analysis (Frederick Ungar
Publishing Company, New York, 1955), p. 265.
3 Reference 2, pp. 227-234.
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(¢) dim G(w) < oo, where G(w) is the space of all
eigenvectors 7, with eigenvalue w, = w.
(d) For each € E X E, we have

Wy —’gl(’?k, W)t , Llogullnle.  (16)
(e) For every 5 € Ry, we have
1= 2 (e el a7

Define &, = 1,2, where

T = (nk,l)’ k=1,2,3---.
Mk,2

Statements (A), (B), and (C) follow immediately from
Theorem I and (a), (b), and (c). Theorem I implies

Mo = —iop HYE,, k=1,2,3,---. (18)

Thus,
Ot = (> M2 = M1 M) + M2 M1,2)s
= wp w7 (&, HED + (&, &),

from which we obtain (D). Let x € E, X% € S(x), so
that x = iH}g + idx for some g € E. Let

f= (”“f’&")-

X

Then f= Wn for = (g) , and Eq. (16) gives

X
H—iH*x "'kgl(’lk Pl < logpal s 19
and
b “’gl(nk’f)znk,z <@gl lnlls- (20)

Equation (18) gives
(e e = (i B, —iHE) + (&, ),

= w?(fk, Hx) + (&, X) = o0,  (21)
so that
Mies oM = —i“kH'}Ek (22)
and
(x> a2 = 0pbs. (23)

Statement (E) follows at once from Egs. (19), (20),
(22), and (23). Suppose x € E, x € S(x). Then

—iH?
fE( I%Ix)E-RW’
X

and statement (F) follows from (e) and Egs. (22) and
(23). Let B, (k=1,2,---,n) be any n complex

E. M. BARSTON

numbers. Since the {#;} is orthonormal, we have

”f - iﬂkwk’”k ‘
k=1

S T P [ 17 T e

2
2

f— 2 Vel
¥=1

2

2 n
+ z(?’k — Brou)nx
2 *=1

2

where
Ve = (N> e = 0 (25)

by Eq. (21). Equations (18) and (22) through (25)
imply (G). Statement (H) follows immediately from
(F) and (G). This completes the proof.

Under the hypothesis of Theorem II, the eigenvalues
w¥ may be estimated by the standard extremal
methods® used to obtain the eigenvalues of the com-
pletely continuous Hermitian operator W. In general,
these methods will not be convenient, due to the
difficulty of computing H%. The following extremal
characterizations of the eigenvalues avoid this problem.

Theorem III: Let the hypothesis of Theorem II hold,
and suppose that the positive and negative eigenvalues
of Eq. (1) are respectively arranged in the nonin-
creasing and nondecreasing sequences wf > wf > -,
w7 < wy < -+ +. Denote the corresponding eigen-
vectors by &F, k =1,2,3, -, where the & satisfy
the appropriate form of Eq. (7). Then
2 Re (uy, Huy) + (u,, iAu,)

(uy, Huy) + (ug, us)
2 Re (uy, Huy) + (uy, idu,)

w, = min_ y
ueVn (ul ’ Hul) + (“2 ’ u2)

o} = max
ueV,."'

> (26)

(27)

where

VE={u|ueE, of(&, up) + (&, Hu) = 0,
k=1,2,"',n—1}-

We also have

o} = max Ff, o, = min Ff,

28
teU,* geU, (28)

where )
+ _ 1((&,i48) (&, iAE)? (&, HE)

Ff=< 4 29
f 2{(5,5) i[(f,f)“ + (s,s)]} 29)

and
Ut ={&|E€E, (& [H + ofFEIE) =0,
k=1,2,"-,n_1}.

Furthermore,
w';" 2 up w R
wauh=o (& 8)
k=12, ,n~1 (30)
w; < (&, iAf) ,
Ga=e (£, 8)

k=1,2,"*,n~1
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and the number of positive (negative) eigenvalues
w}(wy) is at least as great as the number of positive
(negative) eigenvalues of i4 (counted as often as
their degeneracy).

Proof: Theorem II holds; the operator W of
Theorem 1 is completely continuous and Hermitian
on the Hilbert space E2; and by Theorem I the eigen-
values w are precisely the nonzero eigenvalues of the
operator W, with associated orthonormal eigenvectors

ni given by

—i[wf tHEE
n%=( * , k=1,2,3,-. (31)
&
We have?
1%
ol = max ——— (. "7)2 ®, = min (n, W), e , (32)
neP,* (7]’ 77)2 nePy, ("7, 77)2

where
Pf={"7l77€E2’(’7”7:kt)2=0,k= 1’2,.“"1— 1}

and the maximum (minimum) is achieved for #}(#;).

Letue VZE. For
— it
n= ( H “1), (33)
Uy
we have 7 € P%, so that
> (n, Wn), o, < (n, Wn), ] (34)
. (75 M)a (n, 12
Since
(?7, W’?)z = 2 Re (ul 3 Hu2) + (u29 iAu2) (35)
(77’ 77)2 (ul ’ Hul) + (“2 ] uz)
%, W),
ot =2 3
" (77::;: ’ "f:)z ( 6)
and nf is given by Eq. (33) for 4, = [wX]1£Z,

uy = £, where ue V¥; Eqgs. (26) and (27) follow
Equations (28) are obta.ined by restricting  to be of

the form
. ([th]—ls)
&
in Egs. (26) and (27), and noting that § € UZ implies

ueVi,wf =Fgy, and that for u = [Fﬂ:]—lf,
Uy = E, we have
R
2Re (u,, Huy) + (uy, iduy) _FE a1

(wl’ Hul) + (“2a u2)
Let §€E, (§ &) =00r(§,8)=0,k=1,2,--,

n — 1, Then
0
= E?
¢ (s) ©

4 Reference 2, p. 237.
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satisfies (nF, 0. =0, k=1,2,---,n—1, ie,
{ePt. Now

&0, (5 5’

so that Egs. (32) imply Egs. (30).

Finally, suppose we have m positive (negative)
eigenvalues w](w;) with associated eigenvectors 7
given by (31), and n positive (negative) eigenvalues
D) of iA with associated orthonormal eigen-
vectors 9, and suppose m < n. The existence of a
further eigenvalue w}, , or w;, is assured by Egs.
(32), provided we demonstrate the existence of a vector

{r (&) e Py, (P,,,) for which
(C+’ W£+)2 (C_’ Wl_)z
(& 0, (& 8),
But m < n implies that there exists a nonzero vector
y* in the n-dimensional space spanned by {yilr,

>0, <0. (39

such that (y*, §5) =0,k =1,2,---,m. For (=
(yO ) € E?, we have {*e P% , and
@, _oniayy SR (“0)
+ + vty on ’
(C !E )2 (y >y ) kglla;:F
- L Sk la
2 W 2 i4 k-—-l
(C(Z‘ Cé)) (O, idy) <0, (41)

0=y S 12
. §1|°‘k|
where y* = 3  afyd,

Theorem IV: Under the hypothesis of Theorem III
we have the following maximum-minimum principles:

2 Re (ul N Hu2)+(u2 N iAug)

w; = min max
vieQ (%, y1)2=0 (uy, Hu)+(uy , up)
k=12, ,n—1 k=1,2,* -+ ,n~1 (42)
w, = max min
YieQ (u, )2 =0
k=1,2,- -+ ,n—1 k=1,2," - ,n—1
o 2Re (uy, Hu) + (up, iduy) @)
(w1, Huy) + (ug, u,)
where
Q= {'PI'I)GEz,lpIERHi}
or

Q= {y|yecE, yeRy})
Proof: For the particular choice of

(Hé—{) k=1,2 1
Ve = ’ =L1L4"""",n—1,
© et



1890

we have (1, 9 )y =0fork=1,2,---,n—1,ifand
only if € V. Equation (26) then implies

w} > min max
YreQ (u, wk)g—o
k=12, --,n—1 k=1, 2

x 2Re (“1 » Huy) + (u,, iAu,)
(uy, Huy) + (ug, uy)

Let {y;}7—} be any n — 1 vectorsin Q. Then g, = TV,
for some ¥, € E2, where

-ryd
T = (lH 0),
0 I

-,n— 1. There exists a nonzero

(44)

for k=1,2,-
vector
n
n= Z“k’ﬁ:
k=1

in the n-dimensional subspace of E? spanned by the
n-orthonormal eigenvectors {n}}7_, of W such that
(n, ¥ =0fork =1,2,:-+,n — 1,1t follows from
Eq. (31) that % can be written in the form of Eq. (33),
with

U, = Z“k(w-h';_)

and for this u we have

n
: Uy = zak£k+’
k=1

(u, Yo = (u, Tle)z = (T*u, ‘Fk)2 = (n,¥) =0,
k=1,2,--,n—1. (45
Equation (35) gives
2Re (uy, Huy) + (uy, iAuy) — (1, Wn),
(uy, Huy) + (uz, uy) (M)
z I“klz w;:
== > wj, (46)
Zlaklz
k=1
so that
max 2Re (uy, Huy) + (u,, iAuy) > ot (47)
(u, ¥ )y=0 (ul » Hul) + (uz, u2)
k=1,2,+-,n—1

Equation (42) follows immediately from Eqgs. (44) and
(47). The proof of Eq. (43) is analogous.

HI. GENERAL SOLUTION FOR A
FINITE-DIMENSIONAL SPACE

Theorem V: Let E be an inner product space and
H and iA linear Hermitian operators with domain and
range in E, and let H be bounded on Dy . Let S denote
the set of all £(¢) satisfying the conditions &(¢) € Dy
for t € (O, T)where T < o0; &(¢)is twice differentiable
on (0,T), &(t)e D, and E(t)e E for te (0, T).
Then for each £(z) € S satisfying

E+Aé+ HE=0, te(0,T), (48)

E. M. BARSTON

we have
(&, &) + (&, HE) = constant on (0, T).  (49)

If H>0 on Dy, then there exists at most one
&(t) € S satisfying Eq. (48) and the boundary con-
ditions
limé&(t) = x,
t-0+
Proof: Let K be a bounded linear Hermitian
operator with D © E, R < E. Suppose f(t) € Dy
fort € (0, T), f(t)exists on (O, T), and f(¢) € E. Now

limé() =%, x,xeE. (50)
t—>0+

—‘(f Kf) = lir_{lo{(f , Kf* )At_ (f, Kf)}
=tim{ (L5 k) + (ke L)),
= (f, Kf) + (Kf.f), 1)

where f' = f(r + At),since f' — fand (f' — f)/At —
S as At — 0. (By the existence of f,

u_ ‘ =0
-1
is implied.) Hence for &£(t) € S,

d .. .
;1;{(5, &) + (6 HE}

= &+ (& b+ (& HE + (HE §),
= (£ + HE O + (5, &+ HY),
where we have used Eq. (48). Thus Eq. (49) holds.
Let & (¢) and &,(¢) both be in S and satisfy the bound-
ary conditions of Eq. (50). Then #(r) = &(¢) —
£,(1) € S, and we have

limn(H) =0, lim#() =0. (52)
=04 10+
Equations (49) and (52) imply (7, 9) + (1, Hp) =0
on (0, T), so that H > 0 leads to ## = 0 on (O, T).
But then
d, .o d , ,
—_— = — , = s 2 = O,
5= (n,m) = (@, m) + (1, 7)
and we obtain |#| = constant on (0, T). Equation
(52) implies ||5]| = 0, so that &,(r) = &£y(2).

Lemma: Let H and iA be Hermitian operators
defined on and into a finite-dimensional unitary space
E. Suppose H > 0, and let P be the projection oper-
ator onto Nyz. Then for each y € Ny, there exists
d € E and a unique 7 € Ny such that

An 4+ H6 =0 and y =7+ PAJ. (53)
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Proof: Define B = PAP on Ng. Then Ng is an
invariant subspace for B, and Ny = Rz @ Ng. Let
u € Ny. Then PAu = 0, so that Au € Ry, since E =
Ry ® Ny . Therefore there exists y € E such that
Au + Hyp = 0. Let A = (I — P)y. Then Au + HA =
0, and Aisunique. [Au + HA, = 0 and Au + HA, =
0 implies H(A; — A;) =0 so that A, =A, for
A;, A, € Rg.] Thus we may define the operator K on
Np by Ku = u + PyAA, where P, is the projection
operator onto Ng, and we have Au + HA =0,
A € Ry . K is clearly linear, and Ny is an invariant
subspace for K. Suppose u € Ng and Ku = 0. Then

0 = (u, Ku) = (u, u) + (u, PyAD),
= (u, u) — (Au, A) = (u, u) + (A, HA).
But H > 0 then implies # = 0. Thus Rx = Np, so

that for each y € Ny there exists an 7€ N and a
A € Ry such that

Pyy =1+ P,AA and An+ HA=0. (54)

Now (I — Py)[y — PAA] € Ry, so that there exists a
A € Ny for which

PAA, = (I — Py)ly — PAA],
=y — Py — PAA + PydA. (55)

Combining (54) and (55), we obtain y = n + P4 X
(A + Ap). Setting d =A + A,, we have y =75 +
PAS and An + H = 0. The uniqueness of # follows
easily from Eqs. (53). Suppose y = n, + PAd, =
1y + PAS, for 1y, 56 Ny, and Ay, + H; =0 =
Any + HB,. Let n =19, — 5y, 8 =06, — 6;. Then
0 =15 4+ PAd and An + HO = 0, so that

0 = (n, n) + (n, PA3) = (n, ) — (4n, 9),
= (n, n) + (8, HO).

Therefore H > 0 implies = 7, — 7, = 0.

Theorem VI: Let H and i4 be Hermitian operators
defined on and into a finite-dimensional unitary space
E, and suppose H > 0. Then the time-dependent
system

E+ AE+ HE(t) =0, 0<t< 0, (56)

with the initial conditions £&(0) = x, 6'(0) = X,
x, X € E admits of the unique solution

E=2u&be™+m+o+y, (57
k

where the &, are the members of the finite (at most

2 dim E elements) sequence of eigenvectors of Eq. (1)

obtained in Theorem II with nonzero eigenvalues cw,.

The numbers a;, are given by

o = wp*{(&, Hx) + 0§, —iX)},  (58)
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0 € E, y € Ny, and 7 € N is uniquely determined by
x and x.

Given initial conditions x, x € E, the solution will
be stable (i.e., » = 0) if and only if P(x + Ax) €
PA(Ny), where P is the projection operator onto Ny .
The system is stable for arbitrary initial conditions if
and only if PA(Ng) = Ny, orif and only if dim N, N
Ng =0 and dim A(Ngz) N Ry = 0.

Proof: If ||A| + ||H| =0, then &(t)=1tx + x.
Suppose {|4|| + |H|| > 0. Then the hypothesis of
Theorem 11 is satisfied; and since H > 0 and dim E <
0, RH = RH}’ NH = NHQ, and E = RH @ NH'
Let x, x be given. By the previous lemma, there
exists a unique 7 € Ny and a d € E such that

An + H8 =0, PG+ Ax) = n + PAS. (59)

Therefore X — n + A(x — 8) € Ry = Ryt, so that
there is a g € E for which

—H§g=5c—n+A(x—6).
We define

(60)

(61)

Then y = (iHYg + idy) € S(y) [see Theorem II(E)]
and Theorem II(F) and Eqgs. (7) and (10) lead to

y=x—20, y=iln— %)

x
y= %“kwksk’ (63)
where
A = wl:z{(ék’ Hy) + wu(&, N} (64)

Set vy = y — >, w&,. Then by Eq. (62), y € Ny and
we have

x=>ub5+0+ . (65)
k
Equations (61) and (63) yield
X =1 & + 7. (66)
k

Thus Eq. (57) satisfies the required initial conditions.
Since the &, are all eigenvectors of Eq. (1) and
Hy = 0, Eq. (57) will satisfy (56), provided {(¢) =
ty + & satisfies (56). But this follows from Hn =0
and An + HO = 0. Thus Eq. (57) is a solution of
Eq. (56) satisfying the required initial conditions; by
Theorem V, it is the unique solution. Now Egs. (61)
and (64) give

Ly = wr?z{(fk’ Hx) + w (&, —iX)} + i B, (67)
where
Br = w5, in) — wy(é, . HO).
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An + Hj = 0 implies

B = (wibe, in) + (wir, An),
= i(wify — widE, m),
= i(H&,,n) = (&, Hn) =0,

since € Ny . Thus Eq. (58) is valid.

Equations (59) and % =0 imply P(x + 4x) =
PAd for d e Ng, ie., P(x + Ax) e PA(Ng). Con-
versely, suppose P(Xx + Ax) = PAS for de&Ng.
Then Egs. (59) hold for = 0; and by the previous

(68)

E. M. BARSTON

lemma, this # is unique. Thus % = 0 if and only if
P(x + Ax) € PA(Ng). The system is therefore stable
for arbitrary x and X if and only if PA(Ng) = Ng.
Now Ny = PA(Ny) ® N, where

N={x|xeNg,PAx=0}={x|xeNg,Ax Ry},

so that PA(Ng) = Ny if and only if dim N = 0.
Since A(N)= A(Ng) "Ry, N,N Nz < N, and
dim A(N) =0 imply N = N4 N Ny, we see that
PA(Ny) = Np if and only if the subspaces A(Nz) N
Ry and N, N Ny both have zero dimension.
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The boundary-value problems of the linearized and nonlinear Boltzmann equations for a gas contained
between two parallel plates are considered. First, the existence and uniqueness for the solution to the
linear problem are proved for some function spaces which are convenient to the nonlinear analysis;
the proof is based on a previous result due to Cercignani, who used a different function space. Then the
existence and uniqueness for the solution to the nonlinear problem can be proved for small boundary
data by using the implicit function theorem in functional analysis. With certain classes of boundary data,
it is shown, for linear as well as nonlinear problems, that all the moments of the distribution function
are continuous in the position variable. The solution to the linearized Boltzmann equation is shown to
approximate the solution to the nonlinear Boltzmann equation in the limit of small boundary data.
The results apply to hard-sphere molecules and hard-potential molecules, i.e., angle-cutoff power-law

molecules with force exponents greater than 5.

I. INTRODUCTION

THE present paper is concerned with the boundary-
value problems of the linearized and nonlinear
Boltzmann equations for a gas contained between two
parallel plates. We first prove, for the linearized
problems, the existence and uniqueness in the normed
spaces E and V (cf. Sec. III). One of the advantages
in using the spaces E and V lies in the possibility of
formulating the nonlinear problems in terms of the
implicit function theorem in functional analysis. As
a consequence, we prove the existence and uniqueness
for the nonlinear problems under the condition that
the boundary data are small in the norm of E.

The results in this paper require no restriction on the
distance between the plates and, therefore, are valid
for arbitrary Knudsen numbers. We consider hard-
sphere molecules and hard-potential molecules, i.e.,
angle-cutoff power-law molecules with force exponent
s > 5. The boundary conditions are given for the
distribution function of the re-emitted molecules at
the plates. The proof of the existence and uniqueness
for the solution to the linear problem is based on a
previous result due to Cercignani,® who proved the
existence and uniqueness for a different function space
Q (cf. the next section).

H. LINEAR PROBLEMS

If we denote the distribution function F in terms of
its perturbation f(c, x) from the base Maxwellian f; as

F=f,+ s,
the linearized Boltzmann equation can be written as

¢,(9f]0x) = Kf — »(c)f, 1)

1 C. Cercignani, J. Math. Phys. 8, 1653 (1967).

where the explicit form of the operator K and the
function »(c) can be found in Grad.? The boundary
conditions are given at the plates by

fle,d) =g (), (c, <O, (22)
Sle, —d)=g.(c), (c;>0), (2b)

and the physical quantities, such as density, velocity,
temperature, stress, etc., are given by the moments of
i2ik L

In a recent paper,! Cercignani introduces the
operator H defined by

Hf = Kf + (o),

where the positive number 4 is so chosen that H is
positive definite on the Hilbert space of functions
square-integrable in ¢. Equation (1) can be formally
integrated along the characteristics to give

f=g+ UHf, 3)

where
g=g,exp [—(A 4+ Dv(d + xsgnc)lcl|]l, (4
dy h(e, y) exp [_ &:tlﬂ_—_ﬂ}

|€al

un=21

Cyp J—dsgne,
&)
and the + signs in (4) refer to ¢, > 0 and ¢, <0,

respectively. Using an Hilbert space, which is denoted
here by Q, with the inner product

(o 8) =[x [ de plejate, B, »,
p©) = [(h + D) + 'l P,

$ H. Grad, Rarefied Gas Dynamics, J. A. Laurmann, Ed. (Aca-
demic Press Inc., New York, 1963), Vol. L.
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Cercignani has been able to prove that the operator
UH in Eq. (3) is a contracting mapping on £, and
consequently arrived at the following theorem.

Theorem: Equation (3) has one and only one solu-
tion in Q for any given g in Q, and || flla < o lIgla
for some positive constant «,, where || {q is the norm
in Q.

However, the space Q is not suitable to the study of
nonlinear problems, and in what follows we shall
find some other integral equation [Eq. (6)] which is
equivalent to Eq. (3) and which is more convenient to
work with in connection with some more suitable
function spaces.

First let us examine if the solution to Eq. (3) also
satisfies the original linearized Boltzmann equation
(1). To this end we note that Kf is square-integrable
in c and x if fis in Q (see Ref. 2, p. 43). Hence Hf
is an integrable function of ¢ and x if ¢ is restricted to
a finite sphere S of radius R.

Then, according to Fubini’s theorem, Hf is integ-
rable in x for almost all ¢ in S, which, in conjunction
with Eq. (3), shows that f is absolutely continuous in
x for almost all ¢ in S. We can then differentiate Eq.
(3) with respect to x and conclude that f satisfies Eq.
(1) for almost all ¢ and x if ¢ is in S. But since the
radius R of the sphere . is arbitrary, we assert that
[ satisfies (1) almost everywhere on the product space
of the whole ranges of ¢ and x. It is easy to see that [
also satisfies the boundary conditions (2) for almost
all c.

On the other hand, since f is absolutely continuous
in x for almost all ¢, we can integrate Eq. (1) along
the characteristics, now using K instead of H. The
result is

[=g+ UK, ©
where g; and U, are given by (4) and (5) with 4 taken
to be zero.

We thus conclude that if f€ Q and f satisfies Eq.
(3) almost everywhere, then f satisfies Eq. (6) almost
everywhere. Conversely, if f; € Q and f; is a solution to
Eq. (6), we can reverse the direction of the above
argument and assert that f; also satisfies Eq. (3)
almost everywhere. Hence we have established a
certain equivalence between Eqs. (3) and (6), and as
a consequence we obtain the following result from the
previously stated existence and uniqueness theorem
of Cercignani.

Theorem 1: If g€ Q, then Eq. (6) has a unique
solution in Q and || fllq < % ligla-

YOUNG-PING PAO

This theorem will now be our point of departure,
and it should be mentioned that in this theorem, g is
used instead of g;.

III. EXISTENCE AND UNIQUENESS
FOR SPACES V AND E

Working with Eq. (6), it is possible to establish
existence and uniqueness for the linear problems in
two function spaces ¥ and E which suit the need of
our analyses concerning nonlinear problems and the
continuity of moments of the distribution function.
We define ¥ and E by the norms

If1% = max f de p(e)f*(e, x),
—d<z<d
1flz = max (1 + ) [£(c, 9.

First consider the case where the inhomogeneous
function g, in Eq. (6) belongs to V. This implies that
g € Q, and consequently Eq. (6) has a unique solution
fin Q, according to Theorem 1. We now prove that
this solution £, in fact, belongs to V. To this end, we
shall obtain an estimate on the quantity

™

|UKS 13 = max f de ple)es?

x{ © dy[Kflexp [—

—d 8gNn ¢,
Using the inequalities

[Kf1(e, )KS e, ) < H{IKfTHe, ) + [KfP(e, )}

Sl

|cel

1® 1
—f dy exo [ [x — ¥l legl]] € - »
Cp J—dsgne, v C)
we obtain the result
|UKF I < f de o)l
xf dy [Kf]® exp [— YIX =N Ix—yl]
—dfgne, lczl

< ff’y e[ des s, 55 05, e, 9,
®)

where t = |x — y| and the function 7 is given in terms
of the kernel K(c, ¢;) of the integral operator K by

_ p(©) O]
I= f de L9 K(e, )K(@ e exp [ Ic,I]' o)

For the function 7, it is possible to obtain the
following estimate:

S(t) = f I(cy, e3; Dlp(ep(c]™ de, de,

<[a+ blntp, (10
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where @ and b are positive constants. A detailed proof
of estimate (10) is given in the Appendix. The term
Int is, of course, connected with the singularity at
¢, = 0 of the integrand in the right-hand term of (9).

With the estimate in (10), we obtain from inequality

®
|UKS IS < f_ dyla+blnlx = y11f1y, (D)

on using the Schwartz inequality for the double
integral over ¢; and ¢;. On the other hand, we have
from Eq. (6)

IF13 < ledy + I1UKSf I,
which, together with (11), yields

d
I1£15 < lgly +fddy(a +blnjx —yl)

x {uglné + f_ dnfa+ bl Iy ~ 7 nfn%}-

From the fact that f€ Q and g, € E, it is not difficult
to see that, in the last inequality, the order of integra-
tions can be interchanged to give

115 <o lgally + o 11

for some positive constants «, and «3; and this shows
that fe V if g, € V. Furthermore, we know from
Theorem 1 that || flo < o; [Iglla, and it is easily seen
that |iglla < 24 |gylly . We thus have || fl < 6 llgilly,
where the positive constant g is independent of g, .
From these results and the fact that fe V' implies
f€Q, we obtain the following theorem.

Theorem 2: If g, € V, then Eq. (6) has a unique
solution fin ¥ and || fly < 8 ligilly -

Now using Theorem 2 as a new starting point, we
can prove a similar result for the function space E,
which is defined in the beginning of this section.

Consider the case g, € E, which obviously implies
that g, € ¥, and consequently Eq. (6) has a unique
solution fin V. We shall prove that this solution, in
fact, belongs to E. For this purpose, it is useful to
note the following norms and inequalities given by
Grad (cf. Ref. 2, pp. 43-44):

N,[f] = max|f],
NPLf] = max (1 + ¥ |7,

NAKS] < m, ( f & dc)*,

N™[f] < meN[£)
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Applying the last two inequalities to Eq. (6), we have

1 < lgal + ms liglly.
(1 + A<+ A gl + mmax |f]],

(L + A1 <+ ¢ gl + mmax (1 + P I1],

from which we obtain, by successive substitutions,
Iflz < m |igillz for some positive number m. There-
fore we arrive at the following assertion.

Theorem 3: If g, € E, then Eq. (6) has a unique
solution fin E and || fllz < m g% -

It is quite clear that analogous results can be
obtained for spaces similar to E, e.g., spaces with the
norm

I/ = max (1 + ¥ [f]
for any r > 2. ’

IV. CONTINUITY OF ALL MOMENTS

With the result in Theorem 3, it is not difficult to
show that all the moments of the distribution function
are continuous in x if the boundary data g, (¢) belong
to E. First let us consider the difference

A, ) = [de1f(e, %) = fe,
Note that g, (c) € E implies g, € E and, therefore,

f€ E. Consequently, (1 + c®¥Kf is bounded (say by
A,); and for x; > x,, we obtain from Eq. (6)

AGxr, x2) < f de [gi(e, %) — gu(e, xp)*

+ A4, de(1+ A7 c;lf dy l:exp (— v Ixs — I yl)
cz>0 —d |c:c|
_— 2
— exp (__ v x, .VI):I
gl
+ 4, de(1 + )72 c f dy exp ( vIx |1 -l— yl)
x>0 Cy
+ A, de(l + ¢®)~3 c;lf dyI:exp (— —ll-_—yl)
€z<0 &1 |ca:|

— exp (_ v|x2_ .VI)]2
leal

2, avew (-2

Using dominated convergence, it is not difficult to see:
that all the integrals above tend to zero as x, — x;.
Similar results hold for x, > x,. Therefore, we have

+ Alf de(14+c®72 ¢
;<0
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A(xy, x3) — 0 as |xp — x| — 0. Finally, we note that

l f de PSS (e, x)) — (e, x2)]

2

< A, %) f de PXO) o,

and arrive at the following conclusion.

Theorem 4: If g,(c)€ E, then all the moments
P(x) given by

P(x) = f de PO)f3f

are continuous in x for all polynomials P(c).

This theorem implies that all the physical quantities
such as density, velocity, temperature, stresses, flux,
etc., are continuous functions of x. It should be
mentioned that the assertion in Theorem 4 remains
valid under the condition that g (c) € ¥; the proof is
quite similar to that of Theorem 4.

V. NONLINEAR BOLTZMANN EQUATION:
EXISTENCE AND UNIQUENESS -

In this section we prove the existence and uniqueness
for the boundary-value problems of the nonlinear
Boltzmann equation under certain conditions on' the
boundary data. With the result in Theorem 3, the
proof is a simple application of the implicit function
theorem using some of the nonlinearestimatesobtained
by Grad.® Following the notation in Ref. 3, we write
the nonlinear Boltzmann equation as

c(f10x) = —vf + Kf +90(f,1);  (12)
and for the nonlinear operator I', the following
estimate

NI, @] < uNP U ING[g] (13)

is obtained by Grad,® where u is a positive constant.
We now consider the boundary-value problem of
Eq. (12) for a gas contained between two parallel
plates. The boundary conditions have the same form
as (2a) and (2b). Equation (12) can again be formally
integrated along the characteristics to yield

=28 + UKf+ vUL(f. f). (14)

We assume that g, € E and introduce the nonlinear
operator A as

Af = f— UKf — »UL(f, ), (15)

in terms of which Eq. (14) becomes Af — g, = 0.
The Frechet differential of A at f may be computed

3 H. Grad, New York University, Courant Institute Report
MF-41, 1964, p. 22; presented at the American Mathematical
Socicty Symposium on Application of Partial Differential Equations
in Mathematical Physics, 1964.
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by first noting that
Pf+hf+m =T =20 ) + T, h).
(16)
On the other hand, we can apply estimate (13) to U;
to obtain

UL, e <ulflelgle- an
In view of the last inequality and Eq. (16), we see that
the Frechet differential D of A at f'is

D(f, h) = (I — UiKh — 20U, I'(f, h),

where I is the identity operator and # is the increment
of f. Inequality (17) clearly shows that D(f, h) is
continuous in f. Furthermore, the Frechet differential
D is equal to I — UK at f=0, and consequently
Theorem 3 indicates that D has a bounded inverse at
f = 0. Summarizing all these results, we conclude that
A satisfies all the hypotheses of the implicit function
theorem, e.g., the version given by Liusternik and
Sobolev.t Therefore, we arrive at the following
assertion.

Theorem 5: There exists a 7> 0 such that the
nonlinear Equation (14) has a unique solution fin E
for all g; which satisfies the condition [gy|gz < 7.
Moreover, || f|lz — 0 as |[gi]lz — 0.

Since the above theorem is a local result in the
sense that g, is restricted to a small neighborhood of
the origin of E, the nonlinear equation (14) should be
understood as weakly nonlinear. We point out here
that Theorem 5 also gives a justification for the line-
arized Boltzmann equation. In fact, this justification
may be stated in the following precise form.

Theorem 6: Let fand f* be, respectively, thesolutions
to Eq. (14) and Eq. (6) with the same g,. Then, as
lg:ll z — 0, we have

1f=r*lg/lflg—0.

The proof is quite simple. We consider the difference

(I — UK)(f = f*) = UL (f. /),
which, according to Theorem 3 and inequality (17),
yields
f=f*le <wlfik

and completes the theorem.

In closing this section, we point out that for the
nonlinear solution, just as is the case for linear prob-
lems, all the moments of the distribution function are

4L. A. Liusternik and V. J. Sobolev, Elements of Functional
Analysis (Frederick Ungar Publishing Company, New York, 1964),
p. 194,
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continuous in x; the proof is exactly the same as that
of Theorem 4 and is omitted. It is also mentioned that
the solution to Eq. (14) satisfies the original Boltzmann
equation (12) almost everywhere, and it also satisfies
the boundary conditions (2a) and (2b) for almost
all c. '

VI. CONCLUDING REMARKS

Throughout this paper we have assumed that
g..(c) are known functions (which is also assumed in
Ref. 1), although, in general, g, (c) do depend on the
solution of the boundary-value problem. To give a
justification for this assumption, we consider the case
of diffusive re-emission which represents, in many
problems, a reasonably realistic boundary condition.
In this case, g (c) have an explicit dependence on ¢
but contain a number of parameters. These parameters
are related to some of the moments of the distribution
function at the plates and are pure constants. We then
solve the boundary-value problem, linear or non-
linear, and the solution will also contain these un-
known constants. Substituting the solution into the
moment integrals gives rise to a system of transcen-
dental algebraic equations which can be used to
determine the unknown constants.

All the results we obtained in this paper apply to
the hard-sphere molecules and hard-potential power-
law molecules. We expect all the results to be also
valid for the case s = 5, for which a more refined
method of estimate than that used in the Appendix
will be needed.

Finally it is noted that the present analysis should
also be applicable to the problems of a gas contained
between two concentric cylinders or concentric
spheres, e.g., the cylindrical Couette problem or the
heat-transfer problems for concentric cylinders or
spheres.
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APPENDIX. PROOF FOR INEQUALITY (10)
We write S(¢) in the form of

S(t) = f de, de, deg dey |RK ;oK 1 KasKodl, (A1)

where
K;; = K(c;, ¢))
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and
R = [cg,canp(ca)r(ca)p(er) p(ea)] " ples)pley)

X exp [—19(cs) [ese| ™ — t(cy) |cagl ']
For » and K;; we use the following estimate:

by < by(1 + ¢ <#(c) < b(1 + ¢, (A2)
|Ky;l < [pis + q:5] exp (_%v?.’l): (A3)
Pis = ay(vy; + v577) exp [—3(c} + c?)]a (A4)

di; = (asfvi;) exp [—30] — 3L5L, (A%)
where v; = |¢; — ¢], £, = (c? — c2)?/vZ,, which can
be found in Ref. 2. (Our velocity ¢ is \/2 times that
used in Ref. 2.) We note that 0 < y < 1. If we apply
the inequality
vl + v + 0], + 03

>+ v+ le+ ¢ — ¢ —cf
> v5

to (Al), we obtain

S(?) Sfdcl de, deg dey |R| [T(p;; + g;)] exp (—3v3y),
(A6)
where the product II is taken over i = 1,2 and j = 3,

4. Let us now consider the term S, in the last integral,
which involves the product of four ¢,;’s, i.e.,

Si(D) =fdc1 de, deg dey |R| 15914925924 €XD (—$039).

Using Schwartz’s inequality on the integrals over
¢, and ¢,, the last equation becomes

S:(® Sfd% de, |caCaz¥(Ca)v(cy)|

X exp [—3v5y — tho(lea,l ™ + lca,l ™),
where
g%
T(c) = P(ci)fdcj 2,
p(c;)
For the function T'(c,) we can obtain two types of
estimates, using the inequality

fdciv'i_jl(l + ¢ exp (=Pl — Bl

<p( + )77 (AT)
where f;, f,, and a-can be any positive constants.
The last inequality is due to Carlemann.® Applying
this inequality to T(c;), we obtain one estimate

T(c)/ple) < p(l + ¢)™? (A8)

5 T. Carlemann, Problémes Mathématiques dans la Théorie Cinéti-
que des Gaz (Almqvist & Wiksells boktryckeri AB, Uppsala, Sweden,
1957), pp- 71-74.
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by noting that p(c) > by(1 + c¢)". To obtain the second
type of estimate for 7, we note that p(c) > by +
7 |c,|/d, and consequently

T(ct) f qﬂ
plc; " (b + 7 leglld)
< exp (— g% cu:)f de; qia

+(bo+ '%') f degl,  (A9)

where D, and D, are, respectively, the regions in the
¢; space for |c;,| < % |c;| and |c;| > el and
g3s = (aa/vy;) exp [—1ev]; — 355).
Now inequality (A7) applies to the two integrals in
(A9), and as a result
T(e)/p(e) < (1 + ) (1 + i)™
Using (A8) and (A10) together, we find

T(cs) T(c,) €3] T(C3)
< (A

ey S )L@} " bleoplen]
< By(1 + ¢p)77,

and the same inequality holds for T{(c,)/»(c,). Using
these results, we obtain for S;(7)

(A10)

SiH < C f deg(l + ) (L + c2) lesal ™

X Gy(Csq 5 1)Go(Cay)Ga(Cs,) €xp (—1hoflcs,]), (All)
where 7 = (1 + y)/4 and we have used the fact that
A+ )1 + ) < (14 ). The functions G; and
G, are given by

Gite, 0= [ dnlnlexp [ —ice — )" - s

Gyl®) = f_ Zdn (1 + 7" exp [~ 3(E — n)’].
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To estimate G, we consider the cases |§| > 1 and
[&] < 1 separately. For |£] < 1, we have

&, 1) < f dn Inl exp [— ﬁ} +m
< (Tz + '7'3 ln t);

and for |£] > 1
Ezf —1 ( )
)| 1yl e y

Gyt 1) < exp (—
+2f exp [—3£%1( — )] dy

<(ra+ 7 In NI + [ET7
Combination of these results yields

Gy(&, 0 <lag + agIn A1[1 + |€]17".

For G;, the estimate can be made in a simpler manner,
and the result is

Gy(8) < a5l + &7
If we substitute the estimates for G, and G, into
(A11), the cg, and c;, integrals can be seen to converge.
We therefore have
)
lesal/”

S1(t) < Aolas + a;1In 1]
x [des el (1 + lena ™ exp
and the last integral may be estimated in a manner
similar to what we did for G,. Finally, we obtain
Sy(1) <[4y + B, In¢]?

for some positive constants 4, and B, . This completes
the estimate for S,. For the remaining terms in the
right-hand side of (A6), we can obtain the same esti-
mates and the proof is similar, but even somewhat
simpler, on account of the fact that the properties of
Py are nicer than those of ¢,;.
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A parallel method to that of Pang and Hecht for the construction of normalized lowering and raising

operators for the orthogonal group O(m) > O(n —1) > - -

> 0(2) is presented. The generators are

defined in a slightly different way from those of Pang and Hecht, and the lowering and raising operators
are constructed without using graphs. The Gel’fand—Zetlin matrix elements of the infinitesimal generators

of O(n) have also been obtained.

INTRODUCTION

ECENTLY Pang and Hecht! have obtained

normalized lowering and raising operators for

the orthogonal group in the canonical group chain

O(m)> O(n — 1) > - -+ D 0(2). Their method differs

from that of Nagel and Moshinsky? in that they
obtain these operators with the aid of graphs.

We present here a parallel method which is more
closely connected with the method of Nagel and
Moshinsky who first obtained the lowering (raising)
operators of the unitary group, though the problem
is far more lengthy and complicated in the case of the
orthogonal group. The generators we use agree with
those of Gel’fand and Zetlin,? but differ from those of
Pang and Hecht. As a result, at least in appearance,
their diagonal generator is the negative of ours, and
their raising (lowering) generators become, in appear-
ance, our lowering (raising) generators, respectively.

Possible application of the orthogonal group to
physical problems has been discussed in Pang and
Hecht’s paper. In particular the groups O(5) and
O(8) seem to be of interest in nuclear physics.* For
further references, one can consult the papers listed
in Ref. 4.

The main purpose of this paper is to present the
general expression of the lowering (raising) operators
of O(n) in algebraic form without using graphs. We
have found that the concept of primitive roots helps a
great deal in simplifying the definition, construction,
and proof of these operators. As a result, our proof,
though still lengthy, is in principle quite straight-

LS. C. Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967).

2J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).

3 1. M. Gel’fand and M. L. Zetlin, Dokl. Akad. Nauk., USSR 71,
1017 (1950).

4 B. H. Flowers and Szpikowski, Proc. Phys. Soc. (London) 84,
193 (1964); J. C. Parikh, Nucl. Phys. 63, 214 (1965);J. N. Ginocchio,
ibid, 74, 321 (1965); M. Ichimura, Progr. Theoret. Phys. (Kyoto)
32, 757 (1964); 33, 215 (1965); K. T. Hecht, Phys. Rev. 139, B794
(1965); J. D. Louck, Los Alamos Scientific Laboratory Reports
LA 2451 (1960).

forward, since it resembles very closely the proof of
Nagel and Moshinsky in the case of the unitary group.
In the evaluation of the normalization constants,
the method used is essentially that of Pang and Hecht,
with one simplification. We have found it not necessary
to sum up the graphs. By introducing a simple theorem
(Step 7, Sec. I D), we have been able to obtain the
normalization constants quite easily. The same remark
also applies to the method of Nagel and Moshinsky.
Finally, mainly as a check, we have obtained the
Gel'fand—Zetlin matrix elements of the infinitesimal
generators of O(n), which, of course, includes a
special case of the Wigner coefficients of O(n).

I. THE REPRESENTATIONS OF O(n)
A. Generators of O(n)

The infinitesimal generators of O(n) are the set of
skew symmetric, Hermitian operators J;; with the
commutation relations

Va5 Joal = il0aader + Oactoa + 6bc"da + 6deac]-
They can be expressed as differential operators

? ]
Iy = —i[x,—= —x,Z).

The fact that they are skew symmetric and Hermitian
means that they are related to each other as follows:

)

Jop = —J3as (2)
Joo="Ju- (3)

We shall classify the generators of O(n) according
to the Cartan canonical basis.

(i) For O(2k + 1)

Typel: H,=J%1 a=1,2,, k (note, we have
found it convenient to write the second subscript on
top, thus making it a superscript).
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Type 2:
1 gp .
Epen = T (ngf-{-l + ljgiri p=12-"k
Faen = \/— 2k+1 ZZID p=12-k
Type 3:
AL = U, + I3+ T — i5),
B! = }(J2_, + J2<'—1 — R+ iIe @
Cl=}—J8 , + I+ I + lJ
Dl = (=T ) o JE — g3 — iJ3e )
p>4q
g=12---k—1,
p=12--k—1,k
N.B. Cf= = J¥&1,

" (ii) For O(2k)
Type 1: H,

Type 2: A2, B,
generators have the following properties:

[Haw Hﬁ] = Oa
[H,, Ag] = (6:111 + 6:1«)"42’
[H,, B;] = ('—6011) - 6aq)B;’

=JEla=1,2" "k

[Ha’ Cq] = (6007 - 6aq)cq’
[Hau Dq] = ( 60:1) + aazq)D ’
[Ha’ E2k+1] = 6apE2k+1’
[Haa F£k+l] = —6angk+1,
[47,B]l=H,+ H,, etc,
. C @ >9
[Dg, €l = 6[ .
Dy (¢>49)
s [Cz’i' (r> p’)}
— Y%’ , »
Dy (p'>p)
, —-B) (p>p
(D%, B — 6“’{ 5 (p p)}
By ("> p)
- 6q‘pBg‘ (p’ > 4),
¢ r>9
[E§k+1 ’ ng+1] = { 1; ’
DY (g>0p)
+ +
A; = Bq C:: = Dap E2Pk+1 = F;’k+1a
\/2F2k—1_ —Ci \/EE;’,C_1=A,’:-—DZ.

¢, C2, D?. Same as in Eq. (4). These

(5
(6
(M
®
®
(10)
(11)
(12)

(13)

(14

(15)

(16)
an
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Other commutation relations can be obtained from
Eq. (1). Note that our definition of H, is opposite to
that of Pang and Hecht. This is because we want to
agree with Gel’fand and Zetlin’s definition of H,, and
to obtain the consistent result that in the generators
the first (lower) subscript is always greater than the
second (top) subscript (or superscript).

B. The Gel’fand Basis

This is defined in the same way as in Pang and Hecht
and will not be repeated here. The branching rules are

i=12,:-p);
i=1,2,---p—1);

Mypi1,s = Moy s 2> Mapiqiias
Myy, ¢ 2 Map 1, 2 Myyp.it1s
Mapir,p 2 Moy o).

The branching rules for the canonical decomposition
of O(n) > O(n — 1) > -+ - > O(2) have been proved
by Boerner.®

C. The Lowering and Raising Operators

It is easily seen that 42, D2, EY, ., correspond to
the roots e, + ¢, e, — e,, €,, respectively, and are
therefore the raising generators, while B2, C¢, FJ, |
correspond to the roots —e, — e,, —e, +¢,, —e,,
respectively, and are therefore the lowering generators.

However, the definition, construction, and proof
of the lowering (raising) operators can be greatly
simplified by the introduction of the concept of
“primitive roots.” These are defined as follows. In
O(2k) there are k primitive roots such that any other
raising generator (or positive root) can be obtained
from combining the primitive roots. Likewise in
O(2k + 1) there are also k primitive roots.

These primitive roots are

0(2k): D%, DZ,--- DiY AFY, (18)
Ok +1): D3, D5, Dy, Eggya. (19)
For example, in O(2k) if we wish to obtain A4¥2,
we can combine first D¥~2 and D¥™? to obtain Dt 2,
since
[Di53, D1 = Di™
Then we can combine D¥-% and 4% to obtain A¥-2,
since
(427, D] = 4.
The other positive roots or raising generators are
obtained by induction.

In O(2k + 1) if we wish to obtain AX, we can
combine first Ef | and D to obtain EXL , since

[D';ﬁ"l, Elzck+1] = Elzci:-h .

5 H. Boerner, Representations of Groups (North-Holland Pub-
lishing Company, Amsterdam, 1963), p. 252.
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to obtain A%

Then we can combine EX !, and E¥ ko

X 2k+1 2k+1
since

[Elzc;-h s Elchl] = Al,g—l-

The other positive roots can again be obtained by
induction.

With the help of the primitive roots we now define
the lowering (raising) operators as follows.

For O(2k)
1. Lowering operator L%, ,p = 1,2,k — 1.

[ng—l’ Lgk = _6apLgk’ 0 S * S k— 19 (20)
[D£:+1’Lgk]. m"m > = 0’ P/ = 1’ 2: et k - 2a
m'n—l,p
(1)
[E5ch, 31| ™2 ) =0, @)
mn—l,p
2. Raising operator RS, ,p = 1,2,k — 1.
[J% 1, R%] =6,,RE, 0<a<k-—1, (23)

(D3, REI| ™2 ) =0, p=1,2- k=2,
m, 1
(24)
(5%, RE] | ™2 ) =0, (25)
n—L1,p
3. “Zero-step” operator Oy ;. .
[J2 040 =0, 0<a<k—1, (26)
(i) For O(2k)
k—m—1 k—1
=G0+ B+ 2 Cci-
p=1 By>pUp_1- - >p1=m+l

k—m—1 k-1

+v2 2

p=1 pp>pg_1 ‘- >p1=m+l

k—1k-—m—1 k-1

S Bz + DB S S

p=1 q=1 p=1 pp> - p=m+

k-1 k-1 k—m—1 k-1

+2 2 3 2

=B vy > yi=1p=1 > -+ py=m+1

i=1

k=1 k—m—1 k-1

+2 2 Ca

=1 p=1 pyp> - u=m+l

k-1 k-1

+3 2

D= pp> ¢ >up=l
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(D4, Ol .o > =0, pP=1,2,-+-k~-2,
Mpa,p
(27)
_ m,
(Bl Oupl | )y =0, (28)
n—1,p
m,
[Rk s Ozl "’>=0, p=12--k—1 (29
My,

For Ok + 1)
1. Lowering operator L}, ,,p=1,2,-" k.

P2 L2 ] = =8, L8, =12k,

(30)

[D541, Ll | ™ > =0, p'=1,2""k-1,
n—1,p
€y
(45, L] | " ) = 0. (32)
My,
2. Raising operator RS, ., ,p=1,2,- k.
[Jzzz_la ng+1] = -6113ng+1 s (33)

[D}s1s Ripial mm"’:,} =0, p'=1,2,-""k—1,
' (4)
_ m,
(42 Rl | 772 ) =0, (35)
n—1,p

We have obtained the lowering (raising) operators
without using graphs. They are:

k4
. Cﬂ;_‘(cﬁ’ + B:’) H 8;;«
i=1

? e
CuCli - Cu (= Fig)H, LII &l + V2—Fi DHC,!

D
CCi -+ + Coz B [—(4x + DDIIT 67br
1 i=1

CrCls- - - Cle1Bln(—Cro ™) - - - (—C)[—(47 + D)
P P’ k-1
x 11 & TT by + 2 (=Fi)(—Fied[—(4f + DDIbCH
i =] =
b
- Clr(—Fh2 W —F&_DI~(A4f + DI T & bimiCon
fml

?
B (—Cu™N=Cuy2) - (—Cl—(4x' + D) E B
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%1 -1 P
+32 S (—Fp (—=Fi )(—=Ci ) - (= CEY[—(A8 + DI T] b Cn
D= pp> o >py=l i=1
k-1 k—1 o k-1 , Vo N '
+3 )3 > 2 Cp - Clr (= Fh N=Fi N~ C (= Cn ) - - (—Chy
P2 vg’> v Syl P=1 > 0 >pp=mtl
k-1 k-1
X [—(A% + D"‘)]TI &L, 1‘[ byl c—l} ngm,n bpyCrm» (36)
e

where
Sm=H,—H +l—m=a,— a,
bp,=a,+a,—1=a,, —1,
a,=H, + k—m,
Chn=a,—1

Note that according to definition, B? should be written in such a way that a > b. If, however, the formula
requires a term B¢ (¢ > b), then we should use Eq. (2) and change it to —B?:

m~1 m-1 m~1 m—1
Ra =2 2 CRCTtCuA + Dy II G T 8+ (47 + DD [T & (3)
D=1 pp>fp—1 - >pp=1 =1 =1
k-1 k-1 k-1
Og = 2H, I'Ila, + ZJZ F%._(Af + DPa;? H a,

Fe1 k-1 k-1
+3 2 V2FL(-C) o (- + D *)na a. G9
P=2 gy >+ Sup=

(i) For OCk + 1)

k~m k
Lﬂk-}-l = I{le + EBME%,HG —1 + 2 2 C::: * C“”*IF%*_I 8—‘1
p=1fgp> -+ >up=m+l i=1
k k-m k b L
+3 2 > Ch CrBPER [T 6 + E E Bo(—C™) -+ (—Cl)Emn
g=lp=1 gp> - py=m+l1 i=1 =2 jip> =1
4 F-m k .
x H s + Z 2 2 2 Ci G B (—C ) -+ (—C,
Pl vy > < ovp=l Pl gy > c oo pyp=mebl

2H-1 II amm H amv. } II gml H amﬂ ’ (39)

=1 i=myl g=1

wherea,, = a, + 4,

m—1 m—1 m~1
Roenr = i{E;nHl + pEl . 2 , 1C’:,’;Cff:" " CuaEpa H 8;;;} q Sy (40)
=1 jty> v or > py= faste

First, a few words about how these operators are obtained. Take the case of L. We start with the simplest
lowering operator, in this case the generators C* and Bi*. They evidently satisfy Eq (20). However, when
they are commuted with D%, we find it necessary to mtroduce the next operators in line in the form of

2 2 CnCh oGt By

P Ay>c"
in order that Eq. (21) may be satisfied. This operator then in turn makes it necessary to introduce the next
operator in line, and so on, until we reach the last operator in line. The diagonal operators §,,,, a,,, and C,,
are so introduced in order to satisfy Eqs. (20)-(35).
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These lowering and raising operators expressed in general form, though substantially the same as those of
Pang and Hecht, are of some practical help, we hope, since one can write them down immediately without
having to draw individual graphs, which increase rapidly in number as k increases.

The proof that these operators indeed satisfy Eqs. (20)-(35) is essentially the same as given by Nagel and
Moshinsky.? Our D2, , is similar to their C}**, and our §,,, is exactly the same as theirs. Some typical examples
are given in Appendix A.

‘ D. Normalization

The normalization constants N¢» , and N, are defined in the same way as in Nagel and Moshinsky.?
We obtain:

(i) For O(2k)
41" " Gma dm Amir " e
Nz )*=|N by “hoa B Bpat b By

41" " Im-1 Gn— 1 dmpr’ " Gra
= Ahp ~ g + Db + g+ 2k —2m — Y+ gu + k—m —1)
X@m—M+k—=m=—=1)gn+ k—m—1)2q, + 2k —2m — 1)

hy—gmtm—u+1
w=1gy —qmt+tm—pu+1

X @+ an+2k—p—m—=1)gu+h,+2k—m—pu—1)

=1 '
X H (qm_qa+”_m)(QM—hy+ﬂ_m—1)
p=m4l

X+ adn+t2k—p—m—1)gu+h+2k—m—p—1), 4y

where according to the notation of Pang and Hecht,

4, = m%—l,fx!

ha = Mop.q»
(Ng:+l)2 = 2(‘1m + h, + 2k — Zm)(hm - Qm)(hk +gm+ k— m)(Qm - hk +k— m)(q”s + k- m)—l

(hy + G + 2k — m — 1)
(qu+4m+2k_m_ﬁ‘)

m—1
x(qu+2k—2m+1)—1]]1;(Qu—qm+m—,u)(hu"'qm—:u+m)
a=

x [ —a—hatp—m@nth+2d-m=p
"“"H'l(qm'—qu"':u_m'i'1)(qm+qy+2k—m~'/")

(ii) For 02k + 1)

(42)

(N )* = 329 + 2k — 2m)(hy, — @y + Dy + G + 2k — 2m)

= gntmoptl)
w1 (g — qmtm—p+ 1)

+ g, + 2k —m — u)gm + b, + 2k — m — )

&

p=m+1

X@n—hytp—m—=1gn+h,+2k—m=—p), (43)
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(N ) = §(hp — 4B+ q + 2k — 2m + 1)

m—1

@m+hy+2k—m—pu+1)
X h,—q,+m—puq, — g, +m—p)
“|=|1(,. q M4 — 4 u(qm+qu+2k_m_”+l)

N l’i[ Gm— b+ —m)gm + B+ 2k—m—pu+1)
“=m+1(qm—qp+,u—'m+1)(qm,+ q,,+2k—m—,u+1)

(44)

The method used to obtain the normalization constants is essentially a combination of the methods of Pang
and Hecht and Nagel and Moshinsky.® Before giving an outline of the steps used to obtain the normalization
constants, we follow Nagel and Moshinsky and give some preliminary relations first.

(iii) For O(2k)

h ™ m' h\\t hl =t m—1 h h m ”
Ly = (sz ) = (™ TT &bt IT Bmsl@um — 1Con BP + CD), @5)
q q qli=m+1 e a/ \q
h h| m=1 h\ /h
Rp = § A" + D), (46)
<q * <qz=q""q><q(’° 2
m—1
11 8 .
Nerir = dml /3 — |gm) Ng=™. 47
H Emp + Dap, H amu(amm +1)
p=m+1 p=1

Equation (47) comes from comparing (45) and (46), taking N to be real. From (45) and (46), we can easily
prove that

<qm +1, Qu — 1| [R2729 LS"I:I] Iqm’ ‘Ln’) =0 m#=m. (48)
We then obtain
mm’ 2 smm' 1
(N, = <l & (o X e D 15, gy, 49)
7 mm’ " 2 smm' 1
(NG5 )* = (G (—a_fa_—)(_1)5+_) 4w (N5, )P, (50)

where m’ > m.

Nz(%""lm—l dm Qm+1"'11k—1) ="'—1(¢1,,+q,,.+2k—,u—m—1)(h,.—qm_+ m—u+1)
@ dmr Gm =1 dmr” " G p=i(h, + g +2k—p—m—1)q, — qu+m—p+1)

e (4m+‘1u+2k_m_l‘—1)(‘1m""1u+.“"m)N2(h1"'hm—1 dm hm+1"'hh-1)
p=mit (qm + By + 2k —m — p — 1)@ — b, + p—m) By hma Gm—1 Bppa B

where 4, >¢,. (51)
The problem is now reduced to finding

Nz(hl oo dm cen hk—i)
hl c e qm_l oo hk—

Nz( 9m s h).
dm — 1’ h

¢ J. G. Nagel and M. Moshinsky, Rev. Mex. Fis. 14, 29 (1965).

which shall be denoted as
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We now follow Pang and Hecht and obtain the normalization constants through the following steps:

Step 1. The Casimir Invariant Cy,

k-1 k—1

2k
2% =¢§,J‘2’ =2Bi+ )AL+ DY + 3 (B + C))(4; + D)

k
X 3 2Fi.Ei + z(J‘;’;-l) + z(zk — 2% (52)

Step 2. ot
(il (Bf + CO(AR + DD 1D = (il &5 H 1+ (Bi + Co)(4x + Dy i) (53)
where p > i. =
Step 3.
k-1 k—1
(il E(Bk + CH(AL + D) 1) =il H1(1 + &.)(By + C(4; + Dj) |i). (54)
Step 4. E—H
k-1 k-1
(il OO |9) = (il 1_{ a; |iXil 4H; — 2a7" Hl(l + &)(Bs + C(4i + DY 1. (55)
Step 5. = =
k—1

Gl TT (1 + 8By + C(Ai + Do) 1) + G HE i) + G HE 1) + (il 2k — 20)H, |i)

a=i+1
= mgk,i + mgk,k + 2k — 2i)my, ;. (56)
Step 6.

2y + k — i)’my = G| (H; + k — i) |i)(i| 2Hz |iy — G| (H; + k — i) |i)

k—1

x Gl TT (1 + &0(B; + C(4; + DY 1. (57)

a=i+1
The proof for Steps 1 to 6 is the same as in Pang and Hecht.

Step 7.
m m m N a,,fi;bl hN am+l h
(m|(By + Cx)(4x + D) |m) = (m| — — [m)
(amm + I)D}:n]-;- amzz(smp + 1) ]_-.[ amnamuam
NOmtLhy2
= (m| { "'",:_1) Im). (58)
II an(mp + D? T @mu8n(@mm + 1)°
p=m+1 p=1

Step 7 has not been used by Pang and Hecht and is introduced here to eliminate the summation of graphs.
The proof is quite simple:

(m] (BY + CEXAY + D) Im) =3 (m| (B{" + C) liXil (4" + Dy") [m)

L . R
=30 o liyl =2 [m), 550
mH{-lgmp H buuCo ;:,[;'Ii- [

Because of Eqs. (20)-(35), the only intermediate state that survives is |{) = [m + 1). The reason is that the
primitive roots of O(2k — 1), with which R7 and L7 commute, contain also the primitive roots of O(x),
2 £ x < 2k — 1. We have seen, for example, how D¥~! and E;‘k +1 10 O(2k + 1) combine to give 45, which
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is a primitive root of O(2k). Hence any other intermediate state that is not [m + 1) and that gives nonzero
matrix elements for R and L7 will be incompatible with Egs. (20)—(35). Since the canonical decomposition
of O(n) © O(n — 1) > - - - > O(2) is complete, these properties apply to a complete set of intermediate states.
Incidentally, this remark also applies to the unitary group. Thus, Step 7 can be applied to Nagel and
Moshinsky’s work to obtain their second recursion relation Eq. (6.6) in Ref. 6, without the use and proof of

Egs. (4.2a’, b’, 2" and b”).
From (56), (57), and (58), we obtain

(Nt 3 = 2(hp — @ + Dby + dm + 2k — 2m — Db + g + k —m — D(gm — b + k —m — 1)

X(2qm+2k—2m—1)(qm+k—m—1)II(qm+h + 2k —m —pu— 1)

u=1

X H (qm+hu+2k_m—:u_1)2(qm"'hp+:u—m)(qm—hu+:u_m—1)

u=m+1
From (59) and (51) we obtain (41). From (41) and (47) we obtain (42).
(iv) For OQ2k + 1)

h m . m—1
< Lo = < H EmsBmp Hamn mm Fies

q q| p=m+1

h ™ m—l

q R2k+1 H Sﬂw 2k+1 s
| \m—l

- ]:Ii' amp
Nem =(ml — 2= |gm) Nomt,

II O +&6u)am + 1) H (@my + D@mm + 2)

p=m+1

<qm + 1, 9w — ll [Raﬂl:+1’ L;”lol-}—ll |qm9 qm’) =0 ms m’9

8,,,,,,' +1 Qm’ —
(o, ) = (gl G E DO = s e e

8mm’amm’
— (gm '+ 1) Bmm’ — 1)
(NS = gl 2 ,,,,(a,,. =D 1g,) (Vg
where m' > m.
m—l qm+m_:u+1)(qm+qu+2k—m_;u)

(NI = (N2
' ”I-Ix(qu—q,..+m — g+ DG+ h, + 2k —m—p)

Gn—dut+p—m@Gn+ g, +2k—m—p)
piid (g — By F o — Mg + by + 2k —m — )’

(Ngm? )%, which appears on the right-hand side of Eq. (66), is obtained through the following steps:

Step 1. The Casimir Invariant C,, ,,

241 k x
Copr= 2 Ji =2 D FaprEan + X (Bf + C)(45 + D))

>3 fm=1 0<i<j

k k k
+ z 2F;j_1E;j_1 +‘zl H{z + Z(Zk - 2i + I)H‘.
= =1

0<i<j

(ha 2 4)-

(59

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67
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Step 2.
(i| F3orERra i) = (il 855 H (1 + &MFgeiEha ). (0> ). (68)

Step 3.
dl zek—f-lEZk+1 [i) = i II 1+ &; )F2k+1E2k+1 i) (69

Step 4.
(il 22 F2le+1E2k+l [1) = (il (Magyrs — Hi)(m2k+1,i + H; + 2k — 2i + 1) |i). (70)

Step 5.

m m Nen ™)
(m| Fany1Eqpys Imy = (m| — ( ”m_)1 |m). ()
I'Il(ﬁm + D¥a, + 1) H @ + D@pm + 2)°
Step 6. =t

m—1

(N 2)* = 324 + 2k — 2m)P*(hp — @ + Dby + G + 2k — 2m) H (4m + h, + 2k —m — p)*

k
X ]._.[ (qm_hu+:u_m)(qm—hy +:u_m— 1.)(qm+hu+2k—m_:u)2' (72)

p=m+1
From (72) and (66), we obtain (43). From (43) and (62), we obtain (44).

E. Matrix Elements of J, ,_,
This follows almost exactly the same way as in Pang and Hecht.

m,, i My
1. Evaluation of  my_y | Jp pna M1
mn—l i mn—l,i

(a) Forn = 2k
In place of Eq. (5.3) in Pang and Hecht we have

k-1 k-1 Mo
{om - [2Hk 1o + IT L:HRzkh;]} > =0, 3)
a=1 a=1 Mog1,q
From
[Ed s, Osal M, i >=0 (G=1,2,-k—1), (74
2k—1,i
we obtain
m m
i 2 2%,5 (2x) 2k, i
\/<m2k—1.1 Ha Moy, 7>

hj = ,
. )(ha‘ =My, + 1) (hy=my_,;+1)
NE1 q{= myy,,) N q;+1

g; +1 q(= my_, ;)
. (hy = my, ;)
—~iN =m
Moy, 5 Mo 5 Zj.(+ 1 2e-1.)
<m2lc—11 +1 J2 ! Moy 1,5 : s
mzk_l'j mzk_l, (hf = m2lc—1,f + 1)

\/EN(%_D q1(= My, )
q;+1
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—i
(mye,; + k — D2my_, ; + 2k — 2j + 1)ir

(mag_1,s + Moy ; + 2k — 2j)

X (Mo, s — Moy 1 Y(May1,5 — Magp + kK — Mgy + Mogy s +k — J)

L (Mg — My 1,y +J — W)y + My 3 5 + 2k — p — j)

n=1 (m2k—l,n — My, +Jj— .“)(mzk—l,,. + Mo+ 2k —p—j)

% ﬁ (M1, — Moy + 1 — D(Mapr,; + Mo + 2k — p — j) i (75)
w=it1 (Myy_y ; — Mgy, + g — Mgy, + My, + 2k — p — J) '
From Eq. (73),
Mg, j Mg, ; 1 k —
<m2k—l,:i I Imag,s ) = Moy I (Mg + 2) . (76)
Map1 5 Mo, =1 (g0 + k — )

(b)Forn=2k + 1
In place of Eq. (5.11) of Pang and Hecht we have

x—1 )
(i = | 3 LoREab + Rivahi + bt [$2*+> -o. @)

2k, %

Commuting the left-hand side of Eq. (77) with 4] + D, we obtain ;. Commuting Eq. (77) with H,,, we obtain
h and b,

h —iy/2 j=1,2 k=1, (78)
(hy =mg,; + 1) (hy = my; + 1)
N(2k) qj(___ mzk,j) N(2k) 4; + 1

q;+1 q= m2k,5)
b= — —! , (79)
\/zg(mzk,k — Mg, +p— k)
= —— - . (80)

\/El_Il(mzk,k + My, + k —p)
ok
From Eq. (77) we obtain

Mopt1,5
<m2,¢,,- +1

Mo, j

2k
J 2k+1

::;""“jlvf> _—i (Moerr,; — Moy Y(Mgpyn,; + Moy ; + 2k — 2f + V(my,,; + k — )

Mg, s 2 (My,; — Moy + k — j + D)(my 5 + mgpp + k — J)

% 3 (Mya — Mo +J — WMoy + Myn + 2k —p —j + 1)
a=1 (mgy — Mag; +Jj — (Mg s + My, — o — j + 1)

X

ﬁ (Mar,; — Maprru + 8 — N(Mags + Mapy1p + 2k —p—j+ 1|}
n=itl (Mg ; — My, + 1 — jiMy ; + ”_‘21:,;4 +2k—p—j+1)

(=12 k. (81)
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mn—l,:‘> (ﬁ; = mn—l,i)
m, o; Vi = My_o;

This follows exactly the same way as in Pang and Hecht. We obtain:

(@) Forn =2k
B Bit B
71"'71"'7’k—l>

2. Evaluation of <mn—1i pin-1

n—2,:

V(2k—1)

<ﬂ1"’/31—1 ﬁf +1 ﬂ1+1‘ ".Bk—l
Y17 Y 7i Vi1 " Ve

=’“(ﬂ,—w+i—f+1)(ﬁ,+y.-+2k—i—j—l)* 2
B =B+ i—j+ DB+ B+ 2%k—i—j—D]’

‘ Bi B Bra V(zk—l)ﬂ1"'ﬂi" Bra > vitk—i—1 83
<)’1"'7£"'7’k—1 ¢ TR R ¢ Hﬁ:"'k_l_l )

(b) Forn=2k+1

<.31 “rr B ﬂ; +1 135+1 B B pee

Y1 Vi Vi Yirr """ Ve

Br B B ﬂk>
12 DY 7 By ¢ N |

I‘I(ﬂj l_]+1)(ﬂl+71+2k'—l"]) . (84)
—1(131—1344"—]+1)(ﬂ4+ﬂz+2k_’—])

Finally, we also obtain the same results as in Pang and Hecht for the matrix elements of J%1, i.e., their Eqs.
(5.44), (5.45), and (5.46). With

lzk,a = My + k—a

lypyg =My, + k —a,

Mo, 1 Moy, 4
<m2k—1,j + 11 I m2k—l,j>
Moy, 5 Mop—2,
k-1 k H
H (lzk—z a lgk—l,i) H (lgk,b - lgk—-l,i)
=A% = —j =1 e b=1 . (85

lae1,/(405e1,s — 1) I;.[j(lgk—l,a = B 1 Mlaeae — 1 — fa,y]

Moy, 5 Moy, 5 . II L2, H lak,a
<m2k_1 | Tt m%_l,,> B%-1 k_l"_ (86)
mzk—z § m2k—2,‘i II lzk—l a(lgk_l a 1)
Moret1,5 . Mopra,s
<m2k,1 + 1 Jogya |Max,s >
Mos1,5 Mop_1,5
1 H
—i H (lak1,0 — Lo, — Dllag-1,0 + lox,) H (art1,o — s — Dllaera,p + lon,s)
= ngﬂ = —2- a=l . (87)

a];.l;(lgk.a ~ B )le — (s + 1))



1910 M. K. F. WONG

From these equations, we see that 43" can be obtained from A%~ by changing m,, , , + 1 to my,_, ,,
and i to —i. Similarly, C}% can be obtained from Coera bY changing m,, ; + 1 to m,, ,and i to —i. Moreover,
matrix elements of the other generators can be cxpressed in terms of 4, B, C in Eqs. (85), (86), (87), and the
commutation relations in Eq. (1). Thus for example,

Mors1,s Migg i1, s ¥
<m2k,a‘ + 1 1 j&i My, 5 — lcszAgi—l } (iZk,i +‘ 12;:—1 + 1) 1 , (88)
Mypa,i + 1 Mgy 1, (s = B0, — Doy — 1)
Mopr,s Plopi, — —- H
<m2m +1 li%’;;i may ) = iCH AL | Lo s = (9)
Mye1,s — 1 Mo, Ui, + o Mo, — os,0)
Mopt1,9 Mogi1, 1
mg,,,, + 1 J 2k+1 m%,i = —IC%:.H.sz‘I I (90)
Mog—1,5 Mag-1, f %”
Moy, Moy, )
<m2;¢..1,§ F 1By ) = —iARICE (Z:k-—-z,i + I, + 1) i 1)
Moo + 1 Mgpoz i (B2 — Beo1, Mlor,s — lap2 — 1)
Mok, Mo, 5 — . i
<ng..1,,~ + 1 Jgili—z m%1’3> = IA%I;-JC;‘:‘I:I—2 . (l:k-J..} l2k-2,a + 1) I , (92)
Mpg,s — 1 Mages,{ (Tae—2s — Toer, Mg a5 + loene — 1
Moy, 4 ots Moy, 4 1
My1,; o [Max,s o Cos ] 93)
Mgz, + 1 Moy_2,{ T2,

Matrix elements of the other generators can then be written down by inspection.

In conclusion, we list some of the differences between our method and that of Pang and Hecht.

1. We have made use of the concept of primitive roots in the definition, construction, and proof of the
lowering and raising operators of O(n), thus making a closer contact with the work of Nagel and Moshinsky
in their treatment of the unitary group.

2. We have obtained the lowering (raising) operators of O(n) without using graphs. There are some minor
differences between our operators and those of Pang and Hecht, mainly because we define H, as Jy, 2,1,
while Pang and Hecht define H, as Jp,_; g, -

3. We have obtained the normalization constants by essentially combining the methods of Nagel and
Moshinsky and Pang and Hecht. Thus we have found, for example, that the summation of graphs is not
necessary.

In all other aspects we follow closely the method of Pang and Hecht, especially in the evaluation of the
matrix elements of J,, , ;.
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APPENDIX

Proof that the Lowering and Raising Operators Satisfy Eqs. (20)-—(35)

The proof, though lengthy, is in principle straightforward. The method is as follows. Take a particular
primitive root, say D{~?, and write down all the terms in the lowering (raising) operator that do not commute
with it, and sum them up. The sum must be zero.

A simple example is to compute the result of commutmg Di,, (m < j < k — 2) through the second term in
line of L. This gives exactly the same results as in Nagel and Moshinsky’s proof for the lowering operator
of the unitary group.
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A more instructive example, typical for the orthogonal group, is to compute the result of commuting
Di7t (m + 1 < j < k — 1) through the 6th and 7th terms in line of L7 . There are four terms, which after
Di! has been commuted through, leave the form

k k-1 §—m—1 -2 , ,
CiCliy - CHP OB (= CY)(—C) -+ (—C)I—(4y* + D]

=0vyr> o >y=1 =0 ;> >pu=ml

i v k-1
x TT &5, T1 b, T 8 H bmuCm- (A1)
=1 v=1 l=m+1
These four terms are

‘ C’;‘B;—l(—'c}’il) te bmi—-l * (A2)

cHy Bi—l( Cv‘ ‘e mj—lb .. (A3)

. C‘,“_lBﬁ_l(—-C;_l)(—C}’i e 8,_,,1,_1b b,,,,_l SRR (A4)

cCHaC B (—CY) - 8 aBmbmia (AS5)

After commuting D' through, remembering that Bi , = —BJ~!, we obtain from Eqs. (A2)-(A5) the
common factor in (A1) multiplied by the sum

(=& iabms18mDm) E o s1bimys — 8 iBmsa + 8 8iss + bm s851,9)
= ( 8 j—lb 1-18 jbm,j)(bm jgm i m,jbm,j) =0.

Other cases are similar to the example given above.
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A set of constraints on a mechanical system may be viewed as a set of surfaces in the phase space of
the problem. To be satisfied simultaneously by the system, these constraints must intersect forming a
differentiable manifold. Lagrange multipliers are eigenvalues which adjust the magnitudes of gradient
vectors in the manifold’s tangent bundle. A Jacobian transformation on the constraints must thercfore
exist and be nonsingular over the domain of equilibrium.

1. INTRODUCTION

OST physical problems of interest deal with

systems which are subject to constraints. These
constraints are usually implicit ones and are initially
used in setting up the equations describing the system.
In mechanics, statistical mechanics, and elsewhere,
the constraints, at times are dealt with explicitly and
the technique of Lagrange multipliers is used in
examining them. An investigation of the geometric
role played by Lagrange multipliers leads to a re-
quirement which must be satisfied by the set of
constraints acting on a system. In particular, this is
shown to hold for discrete mechanical systems
subject to holonomic and certain nonholonomic
constraints.

Expressed in general terms, a set of constraints on a
system is representable as a set of surfaces in a
generalized coordinate space. To be simultaneously
satisfied by the system, the surfaces must intersect
forming a differentiable manifold in the coordinate
space. The vector space, formed in the manifold’s
tangent bundle is then the basis of the associated
phase space. Lagrange multipliers are eigenvalues
which adjust the magnitudes of gradient vectors in
the tangent bundle so that a static or dynamic
balance is achieved. To guarantee the desired behavior
in the tangent vector space and the existence of the
intersection itself, a nonsingular Jacobian trans-
formation on the set of constraints must exist at the
point of static equilibrium or over a domain of points
corresponding to the range of dynamic equilibrium.

Attention is first directed to the case of equilibrium
for an n-dimensional system subject to a single
constraint only; the required geometric configuration

* Present address: Hughes Aircraft Company, Culver City,
California.

is established. Then the more general problem of an
n-dimensional system subject to a set of k simultaneous
constraints is treated. The requirement that a non-
singular Jacobian on the set of holonomic constraint
equations exist over the domain of equilibrium then
becomes evident. This requirement leads to a necessary
condition governing a certain class of nonholonomi-
cally constrained discrete systems. It appears that this
criteria might be extended to cover a more general class
of constrained systems including continuous systems.

2. MECHANICAL SYSTEM UNDER A SINGLE
CONSTRAINT

Consider the problem of a particle or system
having n degrees of freedom constrained holonomi-
cally by

¢(q1’q2a'."qn)=0 (21)
and acted upon by a set of active forces having

the resultant
n

Q= Z 4,0.9:, 9, *

i=1

> Gn)s (2.2)

where {d,,d,, -, 4, are the basis vectors of the
space. For static equilibrium, the virtual work, to the
first order of small quantities is zero, i.e.,
Q*- U =0=0W. (2.3)

The constraint, ¢ = 0, may be interpreted to mean
that the particle or system is constrained to move
only on the surface in coordinate space described; by
@ = 0. Then any virtual displacements about equilib-
rium are confined to a hyperplane (in 3 dimensions—
a plane) tangent to the surface ¢ = 0. Thus the
tangent hyperplane is normal to the gradient of the
surface ¢ = 0 at the point of equilibrium and therefore

1912
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the gradient is normal to all possible virtual dis-
placements. Thus,

Vg-8U =0. (2.4)

Then the requirement that W = 0 means that Q°
is normal to U and since 6U is normal to V¢, Q*
must be colinear with (and thus linearly dependent
on) V¢. Thus,

Q*=1AVep or Q*+ AVep =0. 2.5)
The Lagrange multiplier 4, is now seen to be an
eigenvalue which adjusts the magnitude of the eigen-
vector along Vo.

In Eq. (2.5) Q% is the resultant active force; AVg is
also dimensionally a force and is clearly the reaction
force of the constraining surface. Accordingly, AV¢
is called the reaction force of constraint.! Then in
each direction,

Q¢ + A(@¢/oq,) = 0;

For the case of dynamic equilibrium, suppose that
Q¢ is partially conservative so that

i=1,2-",n (26)

Q* = —VV + Qfe, 2.7

in which Qg, is the nonconservative force resultant
(zero for conservative systems). Then using the
Lagrangian formulation, the equation of equilibrium
becomes

n d (0L oL
= —) ——|| - Q%% —AVp =0 (2.
(glui[dt (aqi) Qi]) -~ Ay %)

or along each direction
1o
dt \94;

This presupposes that the space is such that Eq. (2.9)
may hold simultaneously over all » directions. That is,
does the phase space of {g;,4,| i€ [1, n: integers]}
exist?

It has been pointed out? that if the coordinate space
of a discrete classical problem is a manifold M, then
its tangent bundle “forms” the associated phase
space. The explicit requirement that the coordinate
space be a differentiable manifold, needed here to

__a_é‘_ ?nc—lﬂ,:();
0g; 0q;

i=12",n (29

1J. L. Lagrange, Méchanique Analytique (Courcier, Paris, 1811),
Vol. I, Sec. IV, p. 76.
# R. Herman, J. Math. Phys. 6, 1768 (1965).
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guarantee that Eq. (2.9) is valid, becomes more
salient in the case of multiple constraint.

3. MULTIPLE CONSTRAINT

Consider again the problem of a system of n
degrees of freedom acted upon by a set of forces
resultant in

n

Q* = Z 40915 92> "

i=1

"5 qn)

In this case the motion is subject to a set of holonomic
constraints

»4,) = 0| je[l, k: integers; k < n]}.
3.1

In coordinate space, each @; = 0 describes a surface
on which the system is constrained to move. To satisfy
the set (3.1) simultaneously, the motion is restricted
to some ® = 0 which is the intersection of all the
@; = 0. That is motion is restricted to

{94415 Gas

K
®=Ng¢,=0. (3.2)
i=1

Then by the preceding argument, for static equilib-
rium,

Q*+ AVP =0. 3.3)
If ® is a manifold in a neighborhood of the equilib-
rium point, or a series of connectable neighborhoods
for dynamic equilibrium, then the tangent bundle,
vector space, on ® = 0 will be so behaved that V@
will lie in the “volume” formed by and be a linear
combination of the gradients of the individual com-
ponent surfaces, {p, = 0). That is,

K
VO =3 1Vy,. (3.4)
i=1

Thus, Eq. (3.3) becomes Q° 4+ A'(RE, 1'Vg) =0,
and letting

K
ANij=12y, Q" +34Vg,=0. (3.3)
bl

For dynamic equilibrium, again using the Lagrangian
formulation,

» .Td (0L oL
(zlu"[dt (34,-) dq

3 N. Haaser, J. LaSalle, and J. Sullivan, Intermediate Analysis
(Blaisdell Publishing Company, New York, 1964), pp. 242-247.

K
) — Que "Z:lﬂjv‘l’f = 0.
(3.6)
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In matrix form, Eq. (3.6) beécomes

where ® = NE, ¢, = 0, and the intersection of each
@, = 0 must be a manifold.
For any general

K
O=Ng,=0
]

to be a manifold in a neighborhood of some point P,
each surface, ¢ , = 0, must have a continuous partial
derivative at P, and in addition the Jacobian trans-
formation (from the surfaces to the tangent vector
space) must be nonsingular. That is,

J. R. GASKILL AND M. ARENSTEIN

(3L) Ar_, [y 39, 99 |
dt 04, an tne dq, 9q, dq,
AL\ L g, 09, dox
L)oo | |
dt\og,)  9q, 0g: gy 9g, w
) ) . . .
_ x| " |=0, (3.7
4(3L) 2L _, o O dpx | |
dt\dgg 99x fone d4x Oqx d9x 1
. . . . — 'K =
(aL) L _, o9 09, Ox
| dt aq,, aq,, nnc_ —aqn aqn aqn—

[within the rectangular matrix on the right of Eq.
(3.7)] some nonsingular Kth order Jacobian. The
variables included, are the ones which become
dependent in the intersection and the remaining
variables (n — k of them) are independent.
Conversely, if all Agx = 0, for all K-dimensional
sets, the point P, is singular and the intersection
® = 0 may not exist, or if it exists will not be well
defined, e.g., discontinuous or nondifferentiable.

4. NONHOLONOMICALLY CONSTRAINED

—a% g a%— CASES. . .

a_ a_ 5"— There are problems® of interest in which the
@ % ix surfaces {g, = 0} are not known explicitly, but in

Op, 0@, 0@, which the constraints may be expressed as

9, g, %x ( S 4 gD d
AKK = . . . # 0. (3.8) ;iz=1 l.’l(ql s Qz, [ qrn ) q;

+ alt(qI’ qes " ", q", t)dt = 0
for 1=1,2,---,K. (41
Opx Opx Opx From previous arguments, it is clear that the
oq, a_q2 @ P equilibrium points can lie only on the intersection of

This transformation defines the mapping of the
variables which become dependent in the intersection
to the remaining independent set by mapping both to
the manifold formed by the intersection.*

The rectangular matrix on the right of Eq. (3.7)
contains (the transposes of) all possible Jacobian
transformations on the constraint surfaces. It may be
partitioned to form Kth order Jacobian transforma-
tions. For Eq. (3.7) to be valid, there must exist

4 M. E. Monroe, Modern Multidi ! Calculus, (Addison-

Wesley Publishing Company, Reading, Massachusetts, 1963), pp.
156, 157, 161-171, 180-182.

some set of constraint surfaces and that the forces
of constraint are expressible in the tangent bundle
of intersection as

K
’gll,Vq),.
Thus, each a,; in Eq. (4.1) must be some
%
9q; P
Therefore, to represent a valid set of constraints,

5 H. Goldstein, Classical Mechanics (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1950), pp. 40-43.
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although variation is taken with time fixed, this must
hold at each instant over the domain of time which is
applicable to the problem.

It would seem possible to extend these principles
to nonholonomic constraints expressed as inequalities
for discrete systems and similarly to systems defined
in terms of density functions in as much as similar
things are done in modern control theory.
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Explicit strongly orthogonal two-body orbitals (geminals) are constructed from free-particle Wannier
functions for the lowest singlet state of a one-dimensional homogeneous fermion gas. As an application
of the method, the ground-state energy is evaluated for repulsive delta function interactions for a range
of the coupling constant. For weak coupling, the present method yields a lower energy than that of the
Overhauser state. Using second-order perturbation corrections as a means of comparison, it is found
that, in the high-density limit, the strongly orthogonal geminal product gives only a fifth of the total
correlation energy. In the strong coupling regime, the results are more favorable but it proves difficult

to determine the asymptotic behavior.

1. INTRODUCTION
WHILE some definite progress has been made in
the search for a valid variational method based

on low-order density matrices!~® rather than on a
many-body wavefunction, the necessary and suffi-
cient conditions for a trial second-order density
matrix (which determines the total energy when only
two-body interactions are involved) are in a form
which, with present techniques, render them rather
unsuitable for practical applications.® The variational
validity can at present be established with certainty
only if one starts directly with trial many-body wave-
functions which allow the density matrices, and hence
the energy, to be calculated without further approxi-
mation.

1. E. Mayer, Phys. Rev. 100, 1579 (1955).

2 R. H. Tredgold, Phys. Rev. 105, 1421 (1957).

3 W. H. Young and N. H. March, Proc. Roy. Soc. (London)
A256, 62 (1960).

4 B. C. Carlson and J. M. Keller, Phys. Rev. 121, 659 (1961).

5 A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).
8 C, Garrod and J. K. Percus, J. Math. Phys. 5, 1756 (1964).

Young and March® constructed a two-particle
density matrix from suitable two-body orbitals. We
outline, in Sec. 2, an alternative scheme in which
strongly orthogonal two-body functions (referred to
subsequently as geminals) are employed in con-
structing the antisymmetric total wavefunction, while
in Sec. 3 we apply this method to a homogeneous one-
dimensional fermion gas, building the geminals from
free-particle Wannier functions.

To obtain detailed results for physically interesting
quantities such as energy, density, and momentum
distribution, we have worked out, in Sec. 4, results
for the case of repulsive d-function interactions
between the fermions. Unfortunately, the exact
solution of the problem is not yet known.” The
results are compared with the Overhauser spin
density wave state and, in the weak coupling limit,
with second-order perturbation corrections.

7 J. B. McGuire, J. Math. Phys. 5, 622 (1964); 6, 432 (1965).
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2. STRONGLY ORTHOGONAL GEMINALS

We take a set of geminals ;(1,2),/ =1,2,+++, N,
which satisfy the strong orthogonality conditions®

f W, vl 3 dl =0, J£L (1)

Here 1,2, -, refers to both space and spin co-
ordinates, while y; is assumed to be normalized to
unity, and antisymmetrical such that

'/’1(1, 2) = ‘3”1(2, 1)

Then we may construct a normalized antisymmetric
2N-body wavefunction of the form

- [

X ; (—1)°Py,(1, 2)py(3,4) -

.2)

wn(2N — 1,2N),
(2.3)

where P indicates permutations which interchange
the particles between the geminals. This wavefunction
takes into account the simultaneous correlations of N
pairs including the corresponding unlinked clusters
such that even if we pass to an infinite system N — co,
we do not reproduce the Hartree-Fock approximation
unless the two-body functions are simple products of
one-electron spin orbitals.

If we confine ourselves to two-body interactions,
we can write the Hamiltonian formally as

H = H(0) +2H<a)+ S Hop. @4

>a_..

The expectation value of H is then given by®?

N
E=HO)+3 |%31,2)
I=1
X [H(D) + H2) + H(1, 2)ly/(1,2) d1 a2
N
+2 Y |dld2d3daH(, 3)[1 — Py)
G%D

X 931, Dpil, D953, D3, 4). (2.5)

The corresponding expressions for the first- and
second-order density matrices y and I' are given

8 A. C. Hurley, J. E. Lennard-Jones, and J. A. Pople, Proc. Roy.
Soc. (London) A220, 496 (1953).

 J. M. Parks and R. G. Parr, J. Chem. Phys. 28, 335 (1958).

10 R. G. Parr, Quantum Theory of Molecular Electronic Structure
(W. A. Benjamin, Inc., New York, 1963).

11 E. Kapuy, Acta Phys Acad. Sci. Hung. 9, 237 (1958).

1R, McWeeny, Proc. Roy. Soc. (London) A253, 242 (1959).

13 R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).
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by11—13
N N *
A1 D =3yt D =23 f Vi1, D1, 2) 42,
- - (2.6)
I, 2, 1,2)
y *
=I§_:1‘P1(1', 2’)’/’1(1, 2)
N
+ i 2 {yl(lls 1)?1(2" 2) + yl(zlﬁ Z)YJ(II’ 1)
GED
— 2, Dy (1, 2) — yo(1, 2y (2, 1)} (2.7)

3. ONE-DIMENSIONAL HOMOGENEOUS
MANY-FERMION PROBLEM
We specialize now to the case of 2N fermions
contained in a box of length L and interacting via a
two-body potential V(x;, x;). Neglecting the inter-
actions, the orbitals are obviously given by

¢ = L~} exp (ikx), (3.1)

where k = 2mnf/L, n =10, +1, 12, etc. Assuming
that N is odd, the orbitals described by n =0,
+1,:--, £3(¥ — 1) are doubly occupied in the
ground state, and the others are empty.

In order to form a more suitable localized basis
than the plane waves (3.1), we introduce a lattice
(with spacing x, = L/N) and free-particle Wannier
functions corresponding to the occupied plane-wave
orbitals. It can be shown that, in the case of 4-
function interactions considered in Sec. 4 below, they
are the “optimum localized” functions in the sense of
Edmiston and Ruedenberg.'* When N - o, L - o
such that N/L = }p remains finite, they are given by

wix) = (ky )_ismko(x Ixo)’ =0, 41,
—Ixo

(3-2)
where k, = 7[x, = 3mp is the Fermi wavenumber.
These Wannier functions are equivalent to the
wane-wave orbital (3.1) of the first “band,” with
—ko < k < k,. For higher bands, the Wannier
functions are given by

wl(x) = (komy?
% I:sm koi(x — Ixg) — sin ko(i — 1)(x — Ixo)]

x — Ix,
i=12-+, (33
and satisfy the orthogonality condition
fw{(x)w‘,-’ (%) dx = 6750,;. (34)

14 C. Edmiston and K. Ruedenberg, Rev. Mod. Phys. 35, 457
(1963),
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If we require that all the geminals be singlets and
equivalent to one another, then the most general two-
body function may be written in the form

vr =278 3 Comd(we (xa)a(DB) — a(2B(D)].
(3.5)

Here the C,;’s are symmetrical in the indices i’ and
satisfy the normalization condition

ScCh=1, (3.6)
7,5

while « and § are the usual spin wavefunctions. With
this choice of the coefficients, the total wavefunction
constructed from the two-body functions (3.5) is
invariant under translations of any integral multiple
of x,.

In the following considerations the basis w! is
regarded as fixed and only the coefficients C,;. are
optimized.

The main advantage of this model is that any
product of Wannier functions belonging to the same
lattice site

wix)wi(x) - - Wi (%)

can be summed up over the lattice sites. Thus, the
Wannier functions can be written in the form

ik
WiI(X) — (4k077)_% o [eik(m—l.’to) + e—ik(x-—Izo)] dk.
(i—~1)kop
3.7
It is then easy to show that
+ 4@
S e =27 S sk — 2Mk,),

I=—o0 Xo M=—ow

where M is aninteger: 0, £1, +2, -+, £ 0. By using
this formula, we can carry out the summations for the
density matrices in (2.6) and (2.7).

The spinless first-order density matrix has the form

p(x', x) = 2? > C,.,C, wi(xWl(x). (3.8)

- DX Rt 3 )
$,7,7

There are three different cases:
(1) i" =i (diagonal terms)

2 wix")w(x)
I

sin kyi(x" — x) — sin ko(i — 1)(x" — x)
x'—x

3 (39

_1
k)

(2) i' > i (both are even or odd)
S wi(xwi(x) = _l{sm koli'(x —j x) — (i’ — x’]
1~ T x'—x

_sin k(i — 1)(x' — %) — (i — ")x']}- (3.10)
x' —x ,
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(3) i" > i (oneis even and the other is odd)

> wixywl(x)
T
_ _l{sin kli'(x' — x) = (i' + i — 1Dx']
x'—x
_sinko[(F' = 1)(x"—x) — (i’ + i — )x’
x'—x

™

}. G.11)

The corresponding densities (x" — x) are as follows:

3 wieowl(x) = =, (3.92)
7 Xy
S wleowi) = L cos (' — idkex,  (3.10a)
I X

0

> wixwl(x) = l-cos (' +i— Dkex. (3.113)
I X0

We observe that only the diagonal terms give a
homogeneous density. The contribution of the off-
diagonal elements is inhomogeneous through the
factor cos mkyx, where m = +2, +4, 46, - - -, etc.

We can show similarly that the second- and higher-
order density matrices are also inhomogeneous.

The momentum distribution can be calculated by
using the formula

P(k) = (zw)_lfp(x” x)e—’ik(a:’—z) dx’ dx.

The general form of the latter for interacting
particles in this approach is displayed in Fig. 1. The

100

P(k)

051

6 -4 -2 0 2 4 b
k in units of kg

FiG. 1. Momentum distribution (normalized such that
[+ 2]
J'““ P(K) dk = 1)
—@

for an interacting fermion gas described by strongly orthogonal
geminals based on free-particle Wannier functions.
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discontinuities at values of ko, +2ky, £3k,, - - of
the curve follow from the peculiarities of the basis.

4. CASE OF $-FUNCTION INTERACTION

As the wavefunction (3.5) is invariant under
translations by Mx,, where M is an integer, it is
sufficient to calculate only one term, say the Ith, of
the energy expression (2.5). Dividing this part by two
we get e, the energy per particle. Thus, we need only
sum up the first-order density matrix over the
infinite lattice. Since '

2 z Z Ci’fciiw;z(x,)w;" (x)
JEIi44
= p(x', x) — 23 Cpr;,Ciywi(x")W{(x),

i',4,3

and the summation of p(x’, x) can be carried out
explicitly (see Sec. 3), the expression for € no longer
contains summations over lattice sites.

The d-function interaction Vyd(x; — x,) further
simplifies the treatment because nonvanishing inter-
action exists only between pairs of particles having

antiparallel spins.
Introducing the following abbreviations:

f p(x, W) dx = py;,

[ icomioomiomics) ax = (i,

and
n = Volkom,

we find the following energy expression:

=T CU — i+ H+n[T 3 CuCulikD

ko i3

w
+ - C,' C 3
2%, '%k I kiPik

_1’2

0 iK1 mn

C,-,.C,ch,mC,,m(ikln)]}. (4.1

e(n)-e"fm

-0-10} ,
_0.08_ !
-0'06}
-004f
-0-02t

0 01 02 03 04 05 06 07 08 09 Ton_'

FiG. 2. Energies relative to that of the normal state versus %: (1)
strongly orthogonal geminal product in first approximation of
Sec. 4B. (2) strongly orthogonal geminal product in second
approximation of Sec. 4C; - — — Overhauser state.
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In this case we obtain e, the energy per particle, in
units of k2.

By minimizing e with respect to the coefficients C,;,
for several values of 7, 0 < # < <, we can calculate
the energy as a function of ¥, and k, for the intervals
0<ky < wand 0 L ¥y £ 0, respectively.

A. Hartree~-Fock Approximation

Using the geminal of zeroth order
2wl wiCe)[(DB(2) — (D)),
we find for the Hartree-Fock normal state the energy

) =% + . (4.3)

In the strong coupling limit (7 — o), €'IF tends to 37.

(4.2)

B. First Approximation

We take the first approximate trial function in the
form

2-{,.jz;lcifwf(xl)w§<x2)[a(l)ﬂ(z) — 2B (4.4)

As was to be expected, the singly excited configuration
gives only an unimportant improvement when 5 < 1.
This means that then the density p(x’, x) remains
homogeneous, because the off-diagonal elements in
the first-order density matrix vanish. €,(n) — (),
in the interval 0 < n < 1, is displayed in Fig. 2. As
1 — oo, the contribution of the singly excited con-
figuration increases. In the strong coupling limit, €,(7)
tends to 0.3136% which is equivalent to an improve-
ment of 379 on the energy, and the density becomes
slightly inhomogeneous

pa(x, X) = (1/x0)(2 + 0.002 cos 2kx).

C. Second Approximation

We then take as the second approximation the
trial geminal

3
24 zlcﬁ wixwi(x)[(DB(2) — a(2)B(D)]. (4.5)

i,J=

When 0 < 5 < 1, the contribution from the singly
excited configurations is small but the density is
still inhomogeneous. In particular the presence of the
term Cya[Wi(x)Wi(xg) + wi(x)wl(x,)] gives a non-
negligible cos 4k,x component. In this interval,
es(n) — €8F(n) is displayed in Fig. 2. As # — oo we
obtain ey() = 0.2223% (an improvement of 559 on
the energy). At the same time, we find for the density

p2(x, x) = (1/x0)(2 + 0.576 cos 2kyx
+ 0.264 cos 4kyx).
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This means that the density is contracted towards the
lattice sites. It seems probable that the contraction
will be enhanced in the higher approximations. The
convergence is rather slow. By using this method it
seems to be very difficult (if not impossible) to deter-
mine the correct asymptotic behavior as # — oco.

For comparison the energy of the corresponding
Overhauser state!® €%(%) has been calculated. This is
always lower than the normal (HF) state and
€*(n) — €8F(n) is displayed in Fig. 2. We see from
this that, in the interval 0 < 5 < 0.87, the singlet
state described by the trial function (4.5) is lower in
energy than the Overhauser state. Using higher
approximations the intersection of the two curves is
shifted towards larger values of 7.

D. Calculation of Exact Second-Order Energy
Corrections in High-Density Limit Using
Perturbation Theory

As we have seen above, the convergence on in-
creasing the number of configurations is rather slow.
Therefore, it seemed of interest to sum up over all
possible configurations corresponding to the geminal
product ground state. This sum can be carried out
exactly in this model at the high-density limit.
Geminal (4.2) is the zeroth-order solution of the
Hamiltonian operator
B = = 3[5  L] ks, — ) + 28

2Ldx?  dx}

— e J(WEC))? + (wg(xz»*]}. @.6)

We obtain for the second-order correction per
particle

(2 _ lz Hgg("?)z

2% Hin) — HL M)
Here u means all possible configurations of the
following form:

hw]awil(DBR) — «(BD], 1) > 1.
Only those configurations have nonzero contributions

for which |i — j] < 3. Summing up over all terms we
get

4.7

€® = —0.127272 4.8)

Our first and second approximations (4.4) and (4.5)
at the high-density limit give 34 and 589 of this
contribution, respectively.

We can carry out exactly the summation over all
interpair correlations of order #? which conform to the
strong orthogonality conditions®. Here, only the

15 A, W. Overhauser, Phys. Rev, Letters 4, 414, 462 (1960).
i¢ E, Kapuy, Theoret. Chim. Acta Berl. 6, 281 (1966).

1919

singly excited singlet and triplet geminals contribute:
v = 27 Wilx)wi(x2) + wilxw/(xy)]
X [«(DB(2) — «(2)B(D)},
vi = 27 {wl(x)w{(xp) — wilxw](x))]
«(1)(2),
X\ BDB(2),
2 Hu(DB(2) + «(2B(D)]

We then find for the correction per particle, after
lengthy but elementary manipulations, the result

—0.027072,

which is slightly more than 209 of 2.

Using free-particle orbitals (3.1), we can calculate
exactly the total second-order perturbation correction
per particle €2 to the (singlet) normal state. We have

4.9

& =

—n*n?[12 = —0.8225".

The correction given by (4.8) plus (4.9) therefore
accounts for about 199, of €. This is due to the
neglect of all configurations which violate the strong
orthogonality conditions.

E. Estimate of Effect of Configurations
Containing Basis Functions of Other
Lattice Sites

Using the above second-order perturbation calcula-
tion, it is possible to estimate the effect of Wannier
functions centered on other lattice sites in the weak
coupling limit. It is equivalent to dropping the stroné
orthogonality conditions (2.1) imposed on the
geminals of the product (2.3). If we restrict ourselves
to the first two bands, the only configuration con-
forming to the strong orthogonality conditions is

2t iCewixD [=(DBR) — «(2)B(1)).

It gives the correction per particle as —0.04347?%. The
other possible configurations all violate the strong
orthogonality conditions. They are the following:

2 e wE (D) — «(DBQ)), J, K # 1,

27 w3 (xa) + wileawi (e ][(1)B(2) — a2)B(D)),
J#IL

The lower bound of their contribution to the second-
order correction can be calculated exactly. We find
for the correction per particle —0.0567%2%. (When only
the nearest neighbors J=17I4 1 are taken into
account, —0.0324%2 is obtained.) It means that the
strongly orthogonal contribution, though appreci-
able, is only about 43 9 of the total contribution.
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5. CONCLUSION

For the homogeneous fermion system with in-
finitely short-range interaction, we have shown that,
for weak coupling, n < 0.9, our method based on
geminals built from Wannier functions always leads
to a lower energy than Overhauser’s state. However,
in the strong coupling regime an infinite number of
terms in our trial geminals would be required to
determine the asymptotic behavior. In the weak
coupling limit, the method gives only a fraction of the
total correlation energy due to the fact that the model
is “weakly localizable.” More favorable results can,
of course, be expected for systems which consist of
spatially localized fermion pairs.

It would, we believe, be of interest to apply this
method to a three-dimensional problem with realistic
interactions. However, in this case, the completely
filled first band is usually not equivalent to the

E. KAPUY AND N. H. MARCH

Hartree-Fock ground state. Thus, it would probably
not be worthwhile to employ Wannier functions with,
say, cubic symmetry. Instead, a more fruitful
approach might be to use the spherically averaged
Wannier functions as March and Young!? did.
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The decomposition of any most degenerate unitary irreducible representation (single-valued of dis-
crete principal series) of an arbitrary noncompact rotation group SOy(p, 9) (p > ¢ > 1) when restricted to
the unitary irreducible representations of its maximal noncompact rotation subgroup SO.(p,q — 1) or
SO(p — 1, q) is derived, and characteristic features of the decomposition are discussed.

1. INTRODUCTION

OME physical considerations (e.g., the study of the
scattering amplitude of two particles in the ¢
channel) lead to the questions: What is the decom-
position of a given irreducible representation of a
noncompact group when restricted to irreducible
representations of its noncompact subgroup, and, in
particular, what irreducible representation of a sub-
group appears and how many times. Such problems
have been studied to the best of our knowledge only
for irreducible representations of the Lie algebra of
noncompact unitary groups by using Gel'fand-
Tsetlin patterns! and for irreducible unitary repre-
sentations of the de Sitter group® SO(2, 3). (For
related problems see also Ref. 3.) In our work we
decompose a most degenerate unitary irreducible
representation (single-valued of a discrete principal
series) of an arbitrary noncompact rotation group?
SOy(p,q) (p 2 ¢ > 1) into the unitary irreducible
representations of its maximal noncompact rotation

subgroup SO4(p,q — 1) or SO4(p — 1, ¢).

In order to find the desired decomposition, it is
sufficient to know how the carrier space of the unitary
irreducible representation of SO,(p,q) decomposes
into subspaces each of which is a carrier space of a
unitary irreducible representation of SOy(p,q — 1) or
SOy(p — 1, q). For this purpose we use the approach
developed in Refs. 5-7. We restrict ourselves to the

*On leave of absence from the Institute of Physics of the
Czechoslovak Academy of Sciences, Prague.

1 1. M. Gel'fand and M. L. Graev, “‘Irreducible Representations of
Lie Algebras of U(p, ) Groups” (in Russian), presented at Spring
School of Theoretical Physics, Yalta, (1966) 15 April-5 May.

$ N. T. Evans, J. Math. Phys. 8, 170 (1967).

3 E. P. Wigner, Ann. Math. 40, 149 (1939); N. Ya. Vilenkin and
Ya. A. Smorodinskii, Zh. Eksperim. i Teor. Fiz. 46, 1793 (1964)
[English transl.: Soviet Phys.—JETP 19, 1209 (1964)]; F.-T. Had-
jioannou, CERN Preprint TH. 612 (1965).

4 We denote a component of the unity of the group SO(p, ¢) by
S04(p, 9.

% R. Rgczka, N. Limi¢, and J. Niederle, J. Math. Phys. 7, 1861
(1966).

¢ N. Limi¢, J. Niederle, and R. Raczka, J. Math. Phys. 7, 2026
(1966).

7 N. Limié, J. Niederle, and R. Raczka, J. Math. Phys. 8, 1079
(1967).

decomposition of the discrete series of the most
degenerate representations of SO,(p,q) (p =g > 1),
since they seem to be of physical interest. That is why
we define the representation of SO,(p, g) on a Hilbert
space JE(X) of square integrable functions, the
domain of which is a homogeneous space X of rank
one under the action of SOy(p, g). From the definition
of a group representation we derive the representation
of the corresponding Lie algebra R(p, g) in terms of
differential operators acting on some linear manifold
D(X), which is dense in J(X) (for more details see
Sec. 2). The Géarding theorem® guarantees that every
representation of the algebra R(p, ¢) induces a repre-
sentation of the-group SOy(p, ). For the most degen-
erate representation of SOy(p, q) the ring of invariant
operators of the Lie algebra R(p, q) is generated by
only one invariant operator,® which is the Laplace-
Beltrami operator (see Ref. 10). Analogously to the
works®® we can use the generalized Fourier transforms
of functions f € D(X) with respect to eigenfunctions of
the Laplace—Beitrami operator as a basis for the nat-
ural carrier space of a discrete and continuous series of
representations of R(p, ¢). These representations and
representations on D(X) are unitarily equivalent—for
more details see Sec. 3. We have only to prove that any
infinitesimal representation of SO,(p,q) acting on
such a carrier space (actually its subspace) is Her-
mitian and irreducible and that every camwier space
of an infinitesimal Hermitian irreducible representation
of SOy(p, q) is also a carrier space (after completion)
of the corresponding global unitary irreducible rep-
resentation of SOy(p, ). This is a brief description
of how to construct in general a discrete and a
continuous series of the most degenerate irreducible
unitary representation of the SOy(p, q) group by using
the method developed in Refs. 5-7. A specification

& K. Maurin, Metody Hilbertova Prostranstva (in Russian)
(MIR, Moscow, 1965). Chap. X.

9 I. M. Gel’'fand, Am. Math. Soc. Transl. Ser. 2 37, 31 (1964).

10 S, Helgason, Differential Geometry and Symmetric Spaces
(Academic Press, Inc., New York, 1962), Chap. X, Sec. 2; I. M.
Gel’fand and M. 1. Graev, Trudi Moscow Math. Soc. 8, 321 (1959).
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of this method for our problems consists of
three things: (i) We have to choose a coordinate
system on the homogeneous space X in which not
only the Laplace-Beltrami operator related to R(p, ¢)
is diagonal, but also, that related to R(p,qg — 1) or
R(p — 1, ¢g). (ii) We have to construct a basis for the
carrier space of a unitary irreducible representation of
SOy(p, q9) using the Fourier transforms of functions
J € D(X) with respect to the common eigenfunctions
of both Laplace-Beltrami operators. (iii) Since we are
interested in discrete series of representations of
SO4(p, q), the eigenfunctions of the corresponding
Laplace-Beltrami operator have to belong to its
discrete spectrum. Then the desired decomposition of
the carrier space of a discrete unitary irreducible
representation of SO,(p, g) into the carrier spaces of
unitary irreducible representations of SO,(p,q — 1)
or SOy(p — 1, g) follows automatically.

In Sec. 2 we specify our homogeneous spaces which
are of rank one under the action of SOy(p,q) and
define the representations of SO,(p, q) group and of
its corresponding Lie algebra R(p, g). Moreover, we
solve the eigenvalue problems for the Laplace-
Beltrami operators related to our homogeneous
spaces and construct the carrier spaces of discrete
unitary irreducible representations of SO(p,q) and
their decomposition as well. Section 3 contains the
proof of irreducibility of our representations of
R(p.q) and the proof that from irreducibility of an
infinitesimal Hermitian representation of SOy (p, 9)
follows irreducibility of the corresponding global one.
Finally, in Sec. 4 we briefly summarize the main
results.

2. DISCRETE MOST DEGENERATE UNITARY
IRREDUCIBLE REPRESENTATIONS OF SO(p, q)
AND THEIR DECOMPOSITIONS

A. Homogeneous Spaces X

There have been considered three homogeneous
spaces X of rank one under the action of the non-
compact rotation group SOy(p, q) Refs. (4-6, 11):

SO(p, 9ISOu(p — 1,9), SO(p,q)/SO«(p,q — 1),
SOy(p,q)|T***2 B SO(p — 1,4 — 1).
They can be represented by the hyperboloids H? and

H? and by the cone C?, respectively. They are em-
bedded in the (p + g)—dimensional pseudo-Euclidean

11 We denote the group of translations in the (p + ¢ — 2)-dimen-

sional pseudo-Euclidean space Ry;%_, by 77+~

J. NIEDERLE

space Rp +o—and determined by the equation
XP4 x5 — ) :

— T Xpyg

1 for H?
0 for C?
—1 for HY p2>gq.

Since with the cone C? and with the hyperboloid H}
we can relate only continuous series of representations
of SOy(p, g) and SO,(p, 1), respectively,” we consider
later only the hyperboloids H? and H? (p > g > 1) as
our homogeneous spaces X.

D+1
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B. Definition of the Representation
of SO4(p, q) and R(p, q)

If du(Q) is the Riemannian left-invariant measure
on X and JC(X) is the Hilbert space of L2(u) type, then
the quasi-regular representation of SOy(p,q) we
define as:

SO4(p,9) 2 g~ (U, /)Q) = fg7'Q), feXk(X).

2.1

Such a quasi-regular representation is unitary but
not irreducible (see Sec. 3D).

The Lie algebra R(p,q) can be expressed in the
form of operators x,; of a compact and a noncompact
type (/;; and b,,, respectively) satisfying the com-
mutation relations,

[li:l’ lrs]— = -0, js + 615 + 6irlis - 6“]{1"
Uiss bs) = —6irbjs — Oisbsr + O5bys + 00y,
{bih brx]— = +6irljs + 6:'31# + 6#11'3 + 6i31z‘r'
However, if the representation of the SOy(p, ¢) group
is given by Eq. (2.1), then the corresponding Lie

algebra R(p,q) can be represented by differential
operators X;; of the form

(2.2)

a a i;j=1,“"p
L,.,=xi—a———xa— or

Xi o oqj=p+1,-,p+4q,
B_x__a__;{_x._a_, r=1,'"",p

ox, ox, s=p+1,---,p+4q (23)

or vice versa.

The operators L;;, B,, are unbounded operators in
the Hilbert space JE(X). Therefore, since we con-
sider the representation of the genmerators and of
their polynomials (e.g., the Casimir operator) we
must restrict their domain to some dense linear
manifold in J(X). We take their domain as the linear
manifold D(X) determined by vectors f'€ X(X) of the
form

fQ) =

pﬁ-c
. (zp®
’ xa+a) €= ’

P(x,, - feDX), (249
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where P(x;, -+, x,,.) is an arbitrary polynomial in
Xis 'ty Xpig variablgs. Such a domain D(X) is the
common invariant domain for all the generators
L, B,, and is a dense linear manifold in J(X) (for
the proof see, example, Ref. 7).

C. Eigenvalue Problem for the
Laplace-Beltrami Operator A(X)
The Laplace-Beltrami operator A corresponding to
a discrete representation of the SOu(p,q) group is
related to either the hyperboloid H? (p 2 ¢ > 1) or
to the hyperboloid H? (p > ¢ > 1). (The hyperboloid
H?, we do not consider.)

1. Laplace-Beltrami Operator A(H?), (p 2 q > 1)

If we introduce the coordinate system on the
hyperboloid H? as

x;,=x;coshn, i=1-,p+q-—1,

ne ("' <0, w)& (25)

Xpiq = Sinhy,
where x;,i=1,--+,p + ¢q — 1, are coordinates on
the hyperboloid H? , given in Egs. 3 and 4 of Ref. 5,
then, using the same procedure as in Refs. 5, 6, and 12,
we find that the Laplace-Beltrami operator A(H?) is
given by

8  A(HZ.

AHYD = — ==
(Ha) on cosh’ny

n€(—o0, ). (2.6)
Here, A(H?,) is the Laplace-Beltrami operator
related to the hyperboloid HZ ,, which is explicitly
written in Egs. (3 and 11) of Ref. 5. As is shown in
Refs. 5-7, the spectrum of A(HZ ) is of the form
—o(0c+p+q—3) and consists of the discrete
spectrum!®

i

PSIAMHZ)) o=1, I=—~{}p+4q—5)}
-p+qa-+1,--,

and the continuous spectrum
o=il—}p+g-93),

The explicit forms of the corresponding eigenfunctions
of A(H?_,) depend essentially on g and are reviewed
in the Appendix [Egs. (A1), (A10), and (A12)].

If we represent the eigenfunctions of A(H?) as a
product of the eigenfunctions of A(H”_,) and a
function ¥'@-7(n), we obtain the following differential

CSTA(H?_)): A€ [0, ).

11 3, Fischer, J. Niederle, and R. Raczka, J. Math. Phys. 7, 816
(1966).

13 Here and elsewhere [x] and {x} denote the nearest smaller or
higher integer than x, respectively.

1 E, C. Titchmarsh, Eigenfunction Expansions (Clarendon Press,
Oxford, England, 1962), Pt. I, Sec. 4.19.
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equation for the latter function:

-1 d d
—_— cosh”*“‘” —
[cash”‘”‘2 7 dy K dn
_oo+p+qg—3

Q]‘I’Q"’(n) =0,
ne€(—o0, ). (2.7

cosh’y

Using the transformation
\I"Q-"(n) = cosh‘}ﬂ-‘?ﬂ)n . wQ.ﬂ'(’?),

we derive for 97(n) the differential equation of a
type which has been treated by Titchmarsh.14
Therefore, we immediately know that both inde-
pendent solutions , ;¥'9:°(y) enter into the eigen-
function expansion associated with the differential
operator of Eq. (2.7). Moreover, (analogously to
Ref. 7) the spectrum @ in (2.7) can be written in the
form Q= —-2(X +p+qg—2), and if o is from
PS[A(H?_))}, consists of the discrete spectrum??

PSIAH®)]: Z=L, L= —{¥p+4q9-9}
- +q-N+1,-{3p+qa-H}+2,---,

as well as the continuous one CS[A(H2)]:Z =
iA—3(p+q—2), A0, ), whereas for ¢ from
CS[A(H?_))] it consists only of the continuous
spectrum

CSIA(HD]: T=iA—3(p+g—2), Ael0, »).

Since we are interested in discrete series of repre-
sentations of SOy(p, ), we only give here the form
of the eigenfunctions of the Laplace-Beltrami operator
A(H?) belonging to the discrete spectrum.® For
p = q > 2, we have'

5 /%% NIRRT TN ST /TRty
(I)me, cer Ml ,m[:o-—n/a](n)

3 7SRTR T 'l,...,[ o -
= Vi)« You om0, w, ),
(2.8)
withL —I=—Q2n+2), n=0,1,2+--,

L.t bpabls o @112}
(2) Ymi, EERIS I PYE ST ,ﬁ[:e-nla](g)

L Lz lpiahsles * < of{tg~ -
= Vi () Yoo ,vrf[p:ﬁ],:m, . -{.':n[l(,),lﬁ,/.](e, , &)
2.9

withL—Il=~2n+1), n=01,2,--,

16 The comglete set of functions contains, of course, the eigen-
functions of A(Hg) belonging to both the discrete and continuous
spectra of A(HE). The proof of the completeness of these functions
is given in Ref. 7 in another parametrization.
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and forp > g = 2:

wn Y mpo (D
= @Vim @Y G ), =12,
(2.10)
withL — = —(2n+2), n=0,12,"
@Y me iy (D)
= @Vim) (oY w6, 0), f=12,
(2.11)

withL—Il=—-2n+1), n=0,1,2,---

The Y functions on the right-hand sides of Eqs. (2.8)-
(2.11) are elgenfunctlons of A(H?_,). The exphcn
form of all functions in Eqs. (2. 8)—(2 11) is given in
the Appendix [see (Al), (A10), (Al2), and (B1),
(B3)].

2. Laplace-Beltrami Operator A(Hg), P>qg>1

The coordinate system on Hi(p>g > 1) is
introduced in the same way as in /., Eq. (2.5), but the
x; are now coordinates on the hyperb0101d e s
which is given in Ref. 5. Hence the Laplace—Beltrami
operator A(H?) in this coordinate system has the
form

z coshﬁ+a—2 n— A(H —1)
cosh”““"zn on 617 cosh®
ne(—o0, ). (2.12)
The Laplace—Beltram1 operator A(H?_,) has been
investigated in Refs. 5-7, where it has been shown
that its spectrum is —a(o + p + ¢ — 3), which for
g > 1 consists of the discrete part,'?

PS[A(H )] Il=—{}p+q- 9}

-{Hp+a-5}+1,:

and the continuous part,

CS[A(H; )} o=il—Hp+4q—3), A€[0, ).
The eigenfunctions of A(H?_,) (p > ¢ > 1) we obtain
from the eigenfunctions of A(HZ ) (p >g—1),
expressed in the Appendix (Al) and (A10) and (A12)
changing g<>p, removing the “tilde” from any
variable 903, @l or index /;, m; which previously
had it and at the same time placing a tilde over any
variable #}, @l or index I, m; which previously
did not have it.

Using the same arguments as in the previous case 1.,
we obtain the form of the spectrum of A(H?) as
—2(Z+p+qg—2), and for p > g > 1, we con-
clude that it consists of the discrete part,

PS[AHY]: =L, L=—{}p+q—2)},
—{dp+qg—-2}+1,--

AHY =

o=1,

J. NIEDERLE

as well as the continuous one,
T=iA—3¥p+4q—2), Ae[0, o).

The eigenfunctions of A(H?) are given as a product of
the V function defined in (Bl), (B3) and the
corresponding eigenfunction of A(HZ_,), analogously
to Eqgs. (2.7)~(2.10).

D. Discrete Most Degenerate Unitary Irreducible
Representation of SO(p, q) and Its Decomposition

The Hilbert space J(X) of L2(u) type (domain X
is our hyperboloid H? or HY) is the carrier space of
a discrete and a continuous series of the most degen-
erate representations of SOy(p, ). These representa-
tions are unitary but not irreducible.’® In order to
find the carrier space of irreducible representations,
it is more convenient (for the continuous series it is
even necessary) to use, instead of J¢(X), its generalized
Fourier transform—the Hilbert space'? J(S)—and
then to decompose J(S) into its subspaces, each of
which is a carrier space of an irreducible repre-
sentation of SO,(p, ¢). Since here we are only interested
in a discrete series of representations, we only de-
compose the subspace of ¥(S), say X,(S), which is a
carrier space of a discrete series of representations
of SO(p, g) into a direct sum of Hilbert spaces, each
of which is a carrier space of a discrete irreducible
unitary representation of SOy(p, ). The situation in
any particular case of our homogeneous space X is as
follows.

1. Hyperboloid H? ,p >q > 2o0rp >q=2

The discrete irreducible unitary most degenerate
representations of SOy(p, g) related to H? (p > ¢ > 2
or p > q = 2) are classified by means of the discrete
spectrum of A(H?). Before discussing the decomposi-
tion of J€,(S) into its irreducible subspaces under the
action of SOy(p, q), we have to determine a unitary
space DL and then the discrete Hermitian irreducible
representation of R(p,q) and discrete unitary irre-
ducible representation of SOy(p, ¢).

For this purpose let us first define our notation. We
denote by

Ll .
(» Ym[.],ﬁn}[.]( )(Q) =

where

< Uppahle,

L I, lg
Y m[n/:] LN

a1/} (Q),

* M{(g-1)/3)

) = (0, «=12if ¢>2
»= (“’ﬂ)a a,ﬂ=1,2 if q=2

18 The proof of unitarity of discrete series of representations
follows from (2.1) and the fact that the measure dp(Q) is left in-
variant. For the proof of unitarity of continuous series of representa-
tions see Ref. 7 Sec. 5.

17 The representations on J¢(S) and on Je(X) are unitarily equiv-
alent with respect to the operator performing the generalized
Fourier transform.
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and Y functions are the eigenfunctions of A(H?)
given in Eqs. (2.7)~(2.10), and by

Ll . Lignl
(y)Xm[.},vg&}[.}{) = <(y)Ym{.],r{%}[,]{},f>

= [, o YEERT@ £(@ due,
where fe D(H?) is defined in Eq. (2.4) with the Q
given by Eq. (2.5) and finally we denote by 7, the set
of values of initial y, /, I, Iy, my.,, iy restricted by
those conditions given by (A3), (A9), (All), (A13),
(B2), and (B4), which are applicable in the particular
case considered.

The unitary space DL of /2 type is determined by
sequences

L. __ FRRIAR AN .
Xi= {<y>xm[.;,§§[.§}, 7Ll s, myy, Figg €}
The scalar product and the norm in D* are defined by

LsLienle

Ll Yom[.3.00]

(xba "PL)L = 2 NXmi.m]
P
and by

XL, 'PL € ‘:DL’

e = 3 Iy 1"
The completion of the unitary space DF with respect
to the norm |-l is the Hilbert space JZ.

The discrete unitary irreducible representation of
the SO,(p, ) group and discrete Hermitian irreducible
representation of the corresponding Lie algebra
R(p, q) are defined by

SO«(p, 9)> g —~ Ux"
LI
= {<(7)Yf1[t.]fr}h[.{]}a Usf)s
v b by, by, mey, i€, feD(HD)} e RL;
(2.13)
R(p, 4) 3 x; > Xix"
SRIEWIK .
= {{» Yi[f]ﬁh}{‘]{ L Xuf)s
v by, Ly, mpq, g eng,  fe D(HD)} € DE,
2.19)
where (U, f) is determined in (2.1) and X, in (2.3) with
the parametrization on the hyperboloid H? given in
Eq. (2.5).
The discrete quasi-regular representation in Eq.

(2.1) decomposes into the irreducible representations
in the following way:

WUy =

5 L
Us

=—{{p-+q—4)/2}

on the Hilbert space
1¥%(S) = @ Je~.

L=—{{p+¢~4}/2}

b

(2.15)
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The proof of irreducibility of UL is presented in Sec. 4.
The decomposition of UL with respect to irreducible
unitary representations of SOy(p, g — 1) has the form

vi = 3 Uk
* 1=L+1
on the Hilbert space
o0
L= > okl (2.16)
l=L+1

Here, J¢L+! are subspaces of ¢~ containing the vectors
with a fixed eigenvalue /. As is shown in Ref. 5 such
spaces are carrier spaces of discrete unitary irreducible
representations of the SOy(p, g — 1) group.

2. Hyperboloid HY,p > q > 2

The discrete irreducible unitary representations of
SOy(p, q) are classified now by using the discrete
spectra of A(H?). We can again determine the unitary
space DL and the discrete irreducible representations
of SOy(p, q) and R(p, ¢) analogously to the previous
case 1.

The discrete quasi-regular representation in Eq.
(2.1) decomposes now into the discrete irreducible
unitary representations in the following way:

Lo

WU, = Uf
L=—{(p+ e—4)/2}
on the Hilbert space
%S} = ® %k, (2.17
‘ L=—{{v+a—4)/2}
The decomposition of , UL has the form
UL = S ULt
‘ g lagrl g
on the Hilbert space
g
k=Y okl (2.18)

=L+l
where J%X! are subspaces of JI containing the
vectors with a fixed eigenvalue /. The irreducibility
of UL under the action of SO,(p, g) is discussed in the
next section and the proof of the irreducibility of UL+
under the action of SOy(p — 1, g) is treated in Ref. §.

3. Hyperboloid H ,p > q=2
The classification of the discrete irreducible unitary
representation is now given by means of the spectra
of two operators A(H?) and 7. The representation of
the operator # is defined as

Lz, * " Hip-1)/2}
T(a) le, o ,m[(i(_’_’l,’,;;/]s.ml(g)

= (sign ) * (Y 5 I oo (). (2.19)
Denoting by e the doublet of fixed eigenvalues of
the operators A(HZ) and T and by 7,, a subset of
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ng, for which , YL} (Q) belongs to fixed “eigen-
space” corresponding to the definite eigenvalue of T,
analogously to Sec. 2DI, we can define the unitary
space D¢ and the irreducible representations of
SOy(p, 2), and of R(p, 2). The decomposition of the
discrete quasi-regular representation of SO(p,q) is

WU, = (U + U
L~—{(p=2)/2)

on the Hilbert space

R 3

® XLt o ® ¥,
L=—{rp—2)/2}
(2.20)

and the decomposition of UL-* with respect to the
discrete irreducible unitary representation of
SOy(p — 1, 2) has the form

0
Livx L.+,
U= % U]
=L+l

136(5) =

L=—{(2—2)/2}

on the Hilbert space
Lt - L,
¥ ;=§+1® JeLotd,
where 3%l are subspaces of ¥XI+* consisting of
vectors with a fixed value of /. Asisprovedin Ref. 5, any
XZL. %1 is a carrier space of irreducible discrete unitary
representation of SOy(p — 1, 2). For irreducibility of
UL % see Sec. 3.

3. IRREDUCIBILITY

Let us consider first the representation of the Lie
algebra R(p, q) of the group SO,(p,q). We call the
representation of Lie algebra (2.14) irreducible on a
common invariant domain D if for any two vectors,
say xL, pL € DL, in the enveloping algebra such an
operator AL exists that (xZ, AyY); 3 0.

(2.21)

A. The Representation Related to

the Hyperboloid H?,p > ¢ > 1
The subalgebra R(p,q — 1) (consisting of L,
ihj=1,-~-,pori,j=p+1,---,p+g—1 and
B,r=1,---,p,s=p+1,--+,p+g— 1 or vice

versa) with any operator B, ,,,or L, ., (i=1,"""p;
r=p+1,---, p+q— 1)generatesthe whole algebra
Rp, 9.

In order to prove irreducibility of Eq. (2.4), we
have to show that the carrier space DX of the Her-
mitian representation of R(p,q) has no invariant
subspaces under the action of R(p, ¢). In Refs. 5 and
7, it is proved that each space DI is a carrier space
of the discrete irreducible Hermitian representation of
R(p, g — 1). Therefore, it is sufficient to check that
there always exists one generator in R(p, ¢) and some
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vector belonging to definite DL-!, such that for any
/e PSTA(H?_)], the generator maps this vector into
vectors belonging to all possible neighboring
spaces of DL, that is, to DXH! and D2, Such a
generator, of course, cannot belong to R(p,q — 1),
and hence, if it exists in R(p, ¢), it can be an arbitrary
operator from the set B, ,,, or L, ., (i=1,--",p;
r=p+1,---,p+qg—1) as any one of these
generators together with R(p, ¢ — 1) create the whole
algebra of R(p, ¢).

Let us take the simplest operator from this set,

B, .- In our parametrization (2.5) it has the form
B, ,,, = sin ¢t*/*1. cos #*/* cosh 6 9
on
— sin ¢'®/*1 - cos #/® sinh - tanh 5 -a%

sin ¢!?/%1 - sin $”/* - tanhy 0

cosh 6 A
cos gt”’*1 - tanhy @
cos #*/% cosh § 9¢t*/™
if p iseven, (3.1)

B, ., = cos 3% cosh 6 9
on

0
— sinh 8 - cos 9*/% tanh —
sin 0s 2

sin 3*/% tanhy @
cosh 6 opt
if p isodd. (3.2)
For ¢ > 2 we denote by

L,1,{p/2}
(a)\Fm(n/: P

the vector in DX%, the only nonvanishing component
of which is equal to
SRTIEREI Sy R AR nl(tq—llli)

(@) Amy, + -+ ;mlp/a)sBa, * -« M{(g-1)/2
with indices
My = - c = My = Mg = * = Mgy
_ =a="'l{(a—1)/z)=0
and with
I(Dlﬁ} = max (I + q + 1; 2)’
lpppg ="+ =l=m =0,

(for p even, p odd), if /;,,, must be even according
to (A3), but with [, =max(/+4¢+1;3) and

lpgpy='""=lk=m=1 for p even

lypa='""=bh=m=0 for p odd

if 1, ) must be odd according to (A3).
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For ¢ = 2, we denote and
P &= vk Lo lypy ="""=lh=my=1 for p even,
the vector in DL, the only nonvanishing component lpjpqa = ""=la=m =0 for p odd
of which is equal to
Lulas -+ s} if /5, must be odd according to (A11) or (A13).
o (w X more] Let us show now that the generator B,,,,,, and the
with indices my = « -+ = my,,,; = 0 and with vector
- WEHOD DI () = (@), (,
—— ({;‘ +3 for p=1. 2). T migra; @ = (@), (=, 6),
+2 for f=2 have the desired properties for our proof of irreduci-
lyyy =++""=1L=m =0 (for p even or odd) if bility.
I, s, must be even according to (Al1) or (A13), but After a lengthy calculation, which involves the

I+3 for =1 use of the Clebsch-Gordan coefficients and formulae
I4+2 for B=2 ; 3) for the hypergeometric functions from Ref. 18 (Chap.

Iy = max ({
28, Vol. I), we obtain the following result:

Forp2>qg>2

(1+6¢1)N(l - 1; l{p/z} + 1)
@N; lppep)

1
By oo ¥ = C(3y + 6nE) [ ] TP St

(1+5¢1)N(I +1; 1{2’/2} +1
(z)N(l; l(zz/z))

' 3
+ (D + q-— 1) ' (aal + 6a2F) * [ )] : (l+(’¢11,)(I)L'l-i-l,z{m"}."1

arsa) N — 15 1y — 1)
(a)N(I’ l{za/%})

b3
4+ D (8,5 + 0,E)- [: ] .(Ham@z.z—l.x{m}—‘l
(1+¢5¢1)N(l + 1; l(p/z} — 1)
@N({; 1{9[2})
where a = 1,2, ;N5 lim) = Ny Uye)- N0 - N3 1), and Noyglyyn)s N0, N Ly,) are

defined in (A8), (B3), and (AS), respectively, and d function is the usual Kronecker delta. The coefficients
are defined as

C=1—lpm, D=Il+lym+p—2

i
F(CH+q—1) (B + 8.F)- [ ] : g @EHVORL (33)

(34
q E=}L—-14+1) (L+1l+p+qg—3), F=HL-DHL+I+p+q—2),
an
‘ )(I)L,l,l{,,;g}:i:l — {A(:{:) ) ((z)\F{IJJ{pn}il - (a}wfilvz{,lsw) if p iS evg:n (3.5)
* B() * (¥ ftHerd= if p isodd,
where
A(2) = [(Giory = lprms + 1 £ Doy + lippmya + p — 3 £ DI
QI+ p+d— 32— p— 2igyz) ’ 36
By = Mo = loma 3 & Dlom + loms +p—§ 2 prt

Ql4+p+qg—302—p—2lys)

18 Bateman Manuscript Project, Higher Transcendental Functions A. Erdélyi, Ed. (McGraw-Hill Book Company, Inc.,, New York,
1953), Vols. I, 1L,



1928

For p > q = 2 we obtain

J. NIEDERLE

. L1yt

B, e (a,ﬂ)\FoL'l'l{’m = (01 + 0,2EXC — dgy) - |:

ey NI — 15 Ly + 1)]*
(a,p)N(l§ l{p/Z})

(143g1;8)

. @ Lo L Y

+ (B + 8F)D + 1 + 857) [

ey N+ 15 10y + I)T

ey N — 15 1y — 1)

(a,ﬂ)N(l; l(p/Z}) (1+3801,8)

» QLi-Llpa—1

+ (31 + .4EXD — 851) - [

(1+6¢1;ﬂ)N(l + 1; l(p/2} - 1)

(a,B)N(l; l{p/2}) :|(1+5¢1.ﬁ)

L QLHLU-1 | (37)

+ (B + 8aF)C + 1+ 850) - [

where all symbols are defined as in the previous case,
but with ¢ = 2 and with

wp ¥ miad”

and (;,N(/, /) instead of

L1, o3}
@ ¥ i)

and N(/, ), respectively. The normalization fac-
tors (o, N(, I)), B =1, 2 are given in (Al4) and
(A15), respectively.

For p = q = 2 the expression for

L1
Bys oV,

is obtained from (3.7) putting |/#,| instead of /,,, and
p = q = 2. [Here we use 7, instead of m, in accord-
ance with Egs. (2.19)]. Now the vectors

L,1
(a,ﬁ)‘le

belong to DL+ and we see that operators B cannot
“connect” vectors belonging to DX+*:* and DL~ and
thus the eigenvalue of the Laplace-Beltrami operator
A(HY) is not sufficient to specify completely the
irreducible representation of R(2, 2).

Analyzing the coefficients in (3.3) and (3.7), we
find that for our vector

Erd™, @) = @, (% B),

can vanish only in accordance with the fact that we
are dealing with a representation. For instance, if
g>2and a =2, then for /=L +1,itis E=0
which guarantees that we cannot go lower than the
minimum value of / determined by (A13).

Thus we prove that the unitary space DX(DL: ) is a
carrier space of the discrete irreducible Hermitian
representation of R(p, ¢)(R(2, 2)).

From our construction of the representations of
algebra R(p, q) (see Sec. 2B), it follows that any of
them can be integrated to the representation of the
group SOy(p,q)® A representation of the group

@ N L) :|(1+aa1,ﬁ)

obtained in such a way is unitary.!® Therefore, if the
representation of R(p, q) is irreducible on DL, the
corresponding representation of SO,(p,q) must be
irreducible on JEL. To see it, let us use the proof by
contradiction. Let us suppose that our representation
UL of SO(p, 9) is not irreducible. Then there has to
exist an operator, say C, such that ULC — CUL =0,
and JeL is an “eigenspace” of € corresponding to at
least two different eigenvalues. However, due to the
unitarity of UL and due to the fact that DL is the
common invariant domain of C’X,.,, we conclude that
X;C —CX,;=0 on DI, which contradicts our
proof of irreducibility.

B. The Representation Related to the
Hyperboloid HZ,p > ¢ > 1
The proof of irreducibility is completely analogous
to that in Case 1 of Sec. 2¢, where the roles of

2
l(plz)’ m[n/2]’ ,9(9/2), (p[v/ 1

are now played by

I(alz)’ ’h[alsl’ ,9(«/2}’ (ij[a/z] s

respectively, and therefore we omit it.

4. CONCLUSION

The decomposition of a discrete most degenerate
unitary irreducible representation of an arbitrary
noncompact rotation group, SOy(p,q), (p 2 ¢ > 1),
into discrete unitary irreducible representations of its
maximal noncompact rotation subgroup SOy(p — 1,4)
or SOy(p,q — 1) is explicitly given in Eqs. (2.16),
(2.18), and (2.21).

From the decomposition we can conclude that:

(i) The most degenerate representation of SO,(p, q)
decomposes only into the most degenerate repre-
sentations of SOy(p,q — 1) or SOx(p — 1,¢). (ii)
Any representation of the subgroup appears in the
decomposition, at most, once. In particular, in the
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decomposition of discrete series of representations of
UL of SOy(p,q) appear only irreducible representa-
tions UL! of SOy(p,q — 1) or SOy(p — 1,¢) which
satisfy / > L + 1.

From the proof of irreducibility in Sec. 3, we see that
sometimes the eigenvalue of the Laplace-Beltrami
operator is not sufficient to classify discrete most
degenerate irreducible unitary representations and
that we have to add a new operator 7 from the
commutant to distinguish them. Moreover, we also
remark that a carrier space of the discrete irreducible
unitary representations of SOy(p,q) can be con-
structed by using only the lowest vector (i.e., the
vector with /, I, -+, g, - ,my, " m[(a_l,/zl hav
ing the minimum possible value) and the action of
the generators of the corresponding Lie algebra

R, 9.
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APPENDIX A

The eigenfunctions of the Laplace-Beltrami operator
A(H?_,) create a complete set of functions with respect
to the measure mduced by the coordinate system on
the hyperboloid H? | [see Sec. 2E, A of Ref. 7].

(a@) For p > q > 2, they are of the form of Refs. 7
and 13:

Yo ol e (6, o, @)
Vl(p/:} l{(u—l)/a)(e) le. 'l,(;{[zi/sl(w)
Y (@), (A1)
Yt e om0, 0, @)
= V;‘{plz}-l{(q—l)/z)(e) : Y'l'f;{%:}/ﬂ(w)
Yl lem (). (A2)

The variable A is independent of indices Iy, m,
I,, M., whereas [ has the following dependence:

I =l + ll((q—l)/z}l =—q-+1—2n,

Dr. R. Raczka for many valuable discussions and and n=0,1,2,---. (A3)
Dr. R. Anderson and Dr. J. Fischer for some remarks. Here
tanh Il{(q—x)/a)lg ( 2)
V:(p/s).l{(q—n/s) 6 = cosh™#+e=% ¢
INC, Lz, » Tiamnyz]
I =3 1= |l + Tl + 4 —1 g—1
'2F1( o] + li{(q_l)/z)l;_ trta s oyl | {(24 vl + 4 ; |7((a—1)/2}| + — ;tanhze)

with 6 €[0, ), (Ad)

and

F(%(Il{p/z}l - |7{(q—~1)/2}| —-1— q+ 3))' (li{(q—l)/2}| + —2_) I‘(%(Il{,,/z}l - |7{(u—1)/2)| +1+ P))

Q4 p+q—3) TQGUwm + el + 1+ 12+ a—3) TGl + oyl — D)

(A5)

i
Vl{ﬂlﬂ)sl((q—l)/z}(o)

is obtained from

Vl{vlz) Yo —1)/2}(6)
by putting I =il —3(p +q — 3) in the right-hand side of (A4) everywhere. The Y functions have the

explicit form

»1{p/2}

ergﬁ... cram| m](w)

(N T sin®™* 9% dif (20" - TTexp(imeg), p =2,

k=2

v, r+1)_i n'~r § dJ'::l

k=2

(A6)

(,0r+1) ]._.[ 51n2_k 0’5 de,Mk’(zﬁk) ) };‘I;exp (lmk(pk)’ p= 2r + 1s
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where the d functions are defined as in Ref. 19, and
the indices and normalization factors by
= §(my + Ly + k — 2),
My=3¥m— L, —k+2), (A7)
k=2a3s“',r’ (llEM4),
Jr+1=},+1+?‘—'1 MH_1=I +r—1,
H
k=2 l + k — 1 ( A8)

4771' r
2(l,+1+r)—1 k=21k+k—1
The indices /, are nonnegative integers and m,, are
integers. They are restricted by the conditions

Imgl + Iy =13 — 2ng,* -,

Nr+1 =

[myl + |my| = I, — 2n,,
imr{ + I—l = ;f - 271,,
n=0,1,---, {L2},k=2,3,---

P =0,1,7 -

b r!
Bpiis H ir+1 . (AQ)
The ranges of angles are the following: 67+1 € [0, =),
Fec[0,nDk=2,--r, ¢?e0,2m)i=1,-"",r
The Y functions with tilde indices and variables have
completely analogous expressions.

(b) For p > q = 2 the eigenfunctions of A(H? )
are given by Refs. 7 and 13:

L=1l4,—

WY im0, ) = —2tanh ¢ cosh=#21 g
w
.BFI(I + I + P I—lyy+2 3 . tank? 6)
2 2 2
Yl (@) (A10)
with the restriction
=gl = —@n+2), n=0,1,2,-++, (All)
h—(+e-D g
WY 0 ) = =
((2)N)
X oF, (l+l{n/2}+p"1 1"’{»/2}4'1 1 tanh 9)
2 ’ 2
Yol e (@) (A12)
with the restriction
=gl =—@r+1), n=0,1,2,---, (Al3)

and by
@ Y (6, @)

« = 1, 2, which we obtain by putting/ = il — (p—1)/2
on the right-hand side of (A10) and (A13), respectively.
[A is independent of indices /. so that (All),
(A13) do not hold.]

The angle 6 is now from the interval (— co, ), the
Y functions are defined in (A6) and the normalization

1% M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1961).
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factors are determined as

27
N, 1 = m—
N, L) Arp—1

PGem — QU +1+p— 1) (A14)
an TP + 1+ PIT@Ug — 1+ 1))
N, li) = 20—
Q@ +p-1
TGy — 1+ DICQUG + 1+ D)
PG + 14+ p— DTAUG — n)
APPENDIX B

For the Laplace-Beltrami operator A(H?) given in
(2.6), the V functions appearing in the expressions
(2.8) and (2.9) are defined as

—2 tanh 7,

(A15)

WV ) = == cosh™ Pty
[N}
-2F1(L+ l+p+q—1’L—I+2;§;tanh2,7)
2 2
(B1)
with the condition
L——l=-—(2n+2), n=0,1,2,--- (B2)
and
1
Vi) = cosh~IHrte=2l g
(2
U [N
X oF, (L+H~p+q—2,L“H’1 1 ; tanh® )
2 2 2’
(B3)
with the condition
L-l=-@2n+1), n=0,1,2,---, (B4

where the range of angle 5 is (—o0, ) and the
normalization factors, ,,N(/) and ,,N(J), are obtained
from the expressions (A14) and (A15), respectively, by
changing /;,.,,, /, pinto /, L, p + g — 1, respectively.

The functions ., VF(#) and ,, VZ(7) can be expressed
in terms of the Legendre polynomials or the Gegen-
bauer polynomials. (,,VZ(#), (o, V¥(n) [in terms of the
Gegenbauer polynomials Ref. 18 Vol. II, p. 176] have,
the form:

L (- 1)§(¢—L+1-—a) Lot L2
Vi = —(-——-—— cosh™ itV y . cLt2i,
(a)
a=12
where
_ N TGIL+1+p)

(1)

T*(L + p)™(3(1 — L)Y
@N-4T’GL+1+p+1)
L+1+p—12-THL+$p) T~ L+1))
with (N, (N defined in (B3).

oM =
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